These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12656355)

  • 21. High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer.
    Omote K
    J Phys Condens Matter; 2010 Dec; 22(47):474004. PubMed ID: 21386611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing a porous road pavement using surface impedance measurement: a guided numerical inversion procedure.
    Benoit G; Heinkélé C; Gourdon E
    J Acoust Soc Am; 2013 Dec; 134(6):4782. PubMed ID: 25669290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characteristics of surface sound pressure and absorption of a finite impedance strip for a grazing incident plane wave.
    Sum KS; Pan J
    J Acoust Soc Am; 2007 Jul; 122(1):333-44. PubMed ID: 17614493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption of oblique incidence sound by a finite micro-perforated panel absorber.
    Yang C; Cheng L; Pan J
    J Acoust Soc Am; 2013 Jan; 133(1):201-9. PubMed ID: 23297895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence.
    Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY
    J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An approximate Green's function for a locally excited fluid-loaded thin elastic plate.
    DiPerna DT; Feit D
    J Acoust Soc Am; 2003 Jul; 114(1):194-9. PubMed ID: 12880033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The diffraction of sound by an impedance sphere in the vicinity of a ground surface.
    Li KM; Lui WK; Frommer GH
    J Acoust Soc Am; 2004 Jan; 115(1):42-56. PubMed ID: 14758994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of perilymph viscosity on low-frequency intracochlear pressures and the cochlear input impedance of the cat.
    Koshigoe S; Kwok WK; Tubis A
    J Acoust Soc Am; 1983 Aug; 74(2):486-92. PubMed ID: 6619426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane.
    Ochmann M
    J Acoust Soc Am; 2011 Jun; 129(6):3502-12. PubMed ID: 21682377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Normal incidence sound transmission loss evaluation by upstream surface impedance measurements.
    Panneton R
    J Acoust Soc Am; 2009 Mar; 125(3):1490-7. PubMed ID: 19275307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of low frequency sound absorption by placing thin plates on surface or between layers of porous materials.
    Feng L
    J Acoust Soc Am; 2019 Aug; 146(2):EL141. PubMed ID: 31472554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bayesian acoustic analysis of multilayer porous media.
    Fackler CJ; Xiang N; Horoshenkov KV
    J Acoust Soc Am; 2018 Dec; 144(6):3582. PubMed ID: 30599691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comment on: "Anomalous reflection from a two-layered marine sediment" [J. Acoust. Soc. Am. 155, 1285-1296 (2024)] (L).
    Gudimenko AI; Zakharenko AD; Petrov PS
    J Acoust Soc Am; 2024 Sep; 156(3):1524-1527. PubMed ID: 39230399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying the through-thickness asymmetry of sound absorbing porous materials.
    Salissou Y; Panneton R
    J Acoust Soc Am; 2008 Aug; 124(2):EL28-33. PubMed ID: 18681498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effective impedance of rough porous ground surfaces.
    Attenborough K; Waters-Fuller T
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):949-56. PubMed ID: 11008799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Axial vibrations of brass wind instrument bells and their acoustical influence: Experiments.
    Moore TR; Gorman BR; Rokni M; Kausel W; Chatziioannou V
    J Acoust Soc Am; 2015 Aug; 138(2):1233-40. PubMed ID: 26328736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence of dispersion in an artificial water-saturated sand sediment.
    Wilson PS; Reed AH; Wilbur JC; Roy RA
    J Acoust Soc Am; 2007 Feb; 121(2):824-32. PubMed ID: 17348507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An indirect method for the characterization of locally reacting liners.
    Taktak M; Ville JM; Haddar M; Gabard G; Foucart F
    J Acoust Soc Am; 2010 Jun; 127(6):3548-59. PubMed ID: 20550255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermoacoustic properties of fibrous materials.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jun; 127(6):3470-84. PubMed ID: 20550247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.