These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12656356)

  • 21. Acoustic radiation torque exerted on a subwavelength spheroidal particle by a traveling and standing plane wave.
    Leão-Neto JP; Lopes JH; Silva GT
    J Acoust Soc Am; 2020 Apr; 147(4):2177. PubMed ID: 32359309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustic radiation force control: Pulsating spherical carriers.
    Rajabi M; Mojahed A
    Ultrasonics; 2018 Feb; 83():146-156. PubMed ID: 28622936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acoustic radiation force on a spherical particle in a fluid-filled cavity.
    Zhuk AP; Kubenko VD; Zhuk YA
    J Acoust Soc Am; 2012 Oct; 132(4):2189-97. PubMed ID: 23039415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions.
    Moreira WL; Neves AA; Garbos MK; Euser TG; Cesar CL
    Opt Express; 2016 Feb; 24(3):2370-82. PubMed ID: 26906812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of radially polarized focused light with a prolate spheroidal nanoparticle.
    Sendur K; Sahinöz A
    Opt Express; 2009 Jun; 17(13):10910-25. PubMed ID: 19550491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of an acoustical 2D-beam with an elastic cylinder with arbitrary location in a non-viscous fluid.
    Mitri FG
    Ultrasonics; 2015 Sep; 62():244-52. PubMed ID: 26074458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
    Mitri FG
    Ultrasonics; 2009 Dec; 49(8):794-8. PubMed ID: 19692103
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spherical wave scattering by slender bodies.
    Van Nhieu MT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):325-9. PubMed ID: 18263187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic radiation impedance of rectangular pistons on prolate spheroids.
    Boisvert JE; Van Buren AL
    J Acoust Soc Am; 2002 Feb; 111(2):867-74. PubMed ID: 11865818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electromagnetic field for a beam incident on two adjacent spherical particles.
    Barton JP; Ma W; Schaub SA; Alexander DR
    Appl Opt; 1991 Nov; 30(33):4706-15. PubMed ID: 20717273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates.
    Xu F; Ren K; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):109-18. PubMed ID: 17164849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinematic dynamos in spheroidal geometries.
    Ivers DJ
    Proc Math Phys Eng Sci; 2017 Oct; 473(2206):20170432. PubMed ID: 29118664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Negative optical radiation force and spin torques on subwavelength prolate and oblate spheroids in fractional Bessel-Gauss pincers light-sheets.
    Mitri FG
    J Opt Soc Am A Opt Image Sci Vis; 2017 Jul; 34(7):1246-1254. PubMed ID: 29036135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical and numerical calculations for the time-averaged acoustic force and torque acting on a rigid cylinder of arbitrary size in a low viscosity fluid.
    Wang J; Dual J
    J Acoust Soc Am; 2011 Jun; 129(6):3490-501. PubMed ID: 21682376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The expansion coefficients of arbitrary shaped beam in oblique illumination.
    Han Y; Zhang H; Han G
    Opt Express; 2007 Jan; 15(2):735-46. PubMed ID: 19532296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sound Source Localization Using Non-Conformal Surface Sound Field Transformation Based on Spherical Harmonic Wave Decomposition.
    Zhang L; Ding D; Yang D; Wang J; Shi J
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28489065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A more stable transition matrix for acoustic target scattering by highly oblate elastic objects.
    Lim R
    J Acoust Soc Am; 2017 Sep; 142(3):1362. PubMed ID: 28964086
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electromagnetic-field calculations for irregularly shaped, layered cylindrical particles with focused illumination.
    Barton JP
    Appl Opt; 1997 Feb; 36(6):1312-9. PubMed ID: 18250805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orientation of irreversible adhesion of spherical particles on prolate spheroidal collectors.
    Jones JF; Waters D; Flamm M; Velegol D
    J Colloid Interface Sci; 2006 Jul; 299(2):696-702. PubMed ID: 16556446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light scattering properties of spheroidal particles.
    Asano S
    Appl Opt; 1979 Mar; 18(5):712-23. PubMed ID: 20208804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.