These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12656379)

  • 1. New modeling method and mechanism analyses for active control of interior noise in an irregular enclosure using piezoelectric actuators.
    Geng HC; Rao ZS; Han ZS
    J Acoust Soc Am; 2003 Mar; 113(3):1439-47. PubMed ID: 12656379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise transmission from a curved panel into a cylindrical enclosure: analysis of structural acoustic coupling.
    Henry JK; Clark RL
    J Acoust Soc Am; 2001 Apr; 109(4):1456-63. PubMed ID: 11325117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active control of harmonic sound transmission into an acoustic enclosure using both structural and acoustic actuators.
    Kim SM; Brennan MJ
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2523-34. PubMed ID: 10830376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.
    Halim D; Cheng L; Su Z
    J Acoust Soc Am; 2011 Apr; 129(4):1991-2004. PubMed ID: 21476655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.
    Jayachandran V; Bonilha MW
    J Acoust Soc Am; 2003 Mar; 113(3):1448-54. PubMed ID: 12656380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion loss of an acoustic enclosure.
    Ming R; Pan J
    J Acoust Soc Am; 2004 Dec; 116(6):3453-9. PubMed ID: 15658696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound radiation from an aperture in a rectangular enclosure under low modal conditions.
    Pàmies T; Romeu J; Genescà M; Balastegui A
    J Acoust Soc Am; 2011 Jul; 130(1):239-48. PubMed ID: 21786894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active control of sound transmission through a rectangular panel using point-force actuators and piezoelectric film sensors.
    Sanada A; Higashiyama K; Tanaka N
    J Acoust Soc Am; 2015 Jan; 137(1):458-69. PubMed ID: 25618074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise control in enclosures: modeling and experiments with T-shaped acoustic resonators.
    Li D; Cheng L; Yu GH; Vipperman JS
    J Acoust Soc Am; 2007 Nov; 122(5):2615-25. PubMed ID: 18189553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical and experimental study on active sound transmission control based on single structural mode actuation using point force actuators.
    Sanada A; Tanaka N
    J Acoust Soc Am; 2012 Aug; 132(2):767-78. PubMed ID: 22894199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of sensing and feedback control for vibration/flutter of rotating disk by PZT actuators via air coupled pressure.
    Yan T; Xu X; Han J; Lin R; Ju B; Li Q
    Sensors (Basel); 2011; 11(3):3094-116. PubMed ID: 22163788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of sound transmission into a circular cylindrical shell using distributed vibration absorbers and Helmholtz resonators.
    Estève SJ; Johnson ME
    J Acoust Soc Am; 2002 Dec; 112(6):2840-8. PubMed ID: 12509005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modal expansion method for simulating reverberant sound fields generated by a directional source in a rectangular enclosure.
    Zhong J; Zou H; Lu J
    J Acoust Soc Am; 2023 Jul; 154(1):203-216. PubMed ID: 37436270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibro-acoustic analysis of a rectangular cavity bounded by a flexible panel with elastically restrained edges.
    Du JT; Li WL; Xu HA; Liu ZG
    J Acoust Soc Am; 2012 Apr; 131(4):2799-810. PubMed ID: 22501058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of an elastic mass on frequency response characteristics of an ultra-thin piezoelectric micro-acoustic actuator.
    Kim HJ; Yang WS; No K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1587-94. PubMed ID: 25004529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and Theoretical Modal Analysis of Full-Sized Wood Composite Panels Supported on Four Nodes.
    Guan C; Zhang H; Wang X; Miao H; Zhou L; Liu F
    Materials (Basel); 2017 Jun; 10(6):. PubMed ID: 28773043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Modeling and Attitude Decoupling Control for a 3-DOF Flexible Piezoelectric Nano-Positioning Stage Based on ADRC.
    Chen N; Liu X
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart panels with velocity feedback control systems using triangularly shaped strain actuators.
    Gardonio P; Elliott SJ
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):2046-64. PubMed ID: 15898647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband transmission noise reduction of smart panels featuring piezoelectric shunt circuits and sound-absorbing material.
    Kim J; Lee JK
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):990-8. PubMed ID: 12243188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic modeling of a three-dimensional rectangular opened enclosure coupled with a semi-infinite exterior field at the baffled opening.
    Jin G; Shi S; Liu Z
    J Acoust Soc Am; 2016 Nov; 140(5):3675. PubMed ID: 27908055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.