These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12656593)

  • 1. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces.
    Michaelides A; Liu ZP; Zhang CJ; Alavi A; King DA; Hu P
    J Am Chem Soc; 2003 Apr; 125(13):3704-5. PubMed ID: 12656593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear relationship between activation energies and reaction energies for coverage-dependent dissociation reactions on rhodium surfaces.
    Inderwildi OR; Lebiedz D; Warnatz J
    Phys Chem Chem Phys; 2005 Jul; 7(13):2552-3. PubMed ID: 16189563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implicit solvent effects in the determination of Brønsted-Evans-Polanyi relationships for heterogeneously catalyzed reactions.
    Gomes JRB; Viñes F; Illas F; Fajín JLC
    Phys Chem Chem Phys; 2019 Aug; 21(32):17687-17695. PubMed ID: 31364629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.
    Ferrin P; Simonetti D; Kandoi S; Kunkes E; Dumesic JA; Nørskov JK; Mavrikakis M
    J Am Chem Soc; 2009 Apr; 131(16):5809-15. PubMed ID: 19334787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BEP relations for N2 dissociation over stepped transition metal and alloy surfaces.
    Munter TR; Bligaard T; Christensen CH; Nørskov JK
    Phys Chem Chem Phys; 2008 Sep; 10(34):5202-6. PubMed ID: 18728861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An understanding and implications of the coverage of surface free sites in heterogeneous catalysis.
    Wang H; Guo Y; Lu G; Hu P
    J Chem Phys; 2009 Jun; 130(22):224701. PubMed ID: 19530778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis.
    Ge Q; Neurock M
    J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the Exchange-Correlation Potential on the Transferability of Brønsted-Evans-Polanyi Relationships in Heterogeneous Catalysis.
    Fajín JL; Viñes F; D S Cordeiro MN; Illas F; Gomes JR
    J Chem Theory Comput; 2016 May; 12(5):2121-6. PubMed ID: 27111183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.
    Ishikawa A; Neurock M; Iglesia E
    J Am Chem Soc; 2007 Oct; 129(43):13201-12. PubMed ID: 17915866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-principles study of C adsorption, O adsorption, and CO dissociation on flat and stepped Ni surfaces.
    Li T; Bhatia B; Sholl DS
    J Chem Phys; 2004 Nov; 121(20):10241-9. PubMed ID: 15549900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A density functional theory analysis of trends in glycerol decomposition on close-packed transition metal surfaces.
    Liu B; Greeley J
    Phys Chem Chem Phys; 2013 May; 15(17):6475-85. PubMed ID: 23529559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen atom transfer reactions of C2-, C4-, and C6-: bond dissociation energies of linear H-C2n- and H-C2n (n = 1, 2, 3).
    Shi Y; Ervin KM
    J Phys Chem A; 2008 Feb; 112(6):1261-7. PubMed ID: 18211042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DFT study of the adsorption and dissociation of CO on sulfur-precovered Fe100.
    Curulla-Ferré D; Govender A; Bromfield TC; Niemantsverdriet JW
    J Phys Chem B; 2006 Jul; 110(28):13897-904. PubMed ID: 16836339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trends in C-O and C-N bond formations over transition metal surfaces: an insight into kinetic sensitivity in catalytic reactions.
    Crawford P; Hu P
    J Chem Phys; 2007 May; 126(19):194706. PubMed ID: 17523827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of CCl(4) adsorption and hydrogenation on a Pt (111) surface.
    Lu G; Lan J; Li C; Wang W; Wang C
    J Phys Chem B; 2006 Dec; 110(48):24541-8. PubMed ID: 17134213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical chlorine evolution at rutile oxide (110) surfaces.
    Hansen HA; Man IC; Studt F; Abild-Pedersen F; Bligaard T; Rossmeisl J
    Phys Chem Chem Phys; 2010 Jan; 12(1):283-90. PubMed ID: 20024470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple rate-determining steps for nonideal and fractal kinetics.
    Vlad MO; Popa VT; Segal E; Ross J
    J Phys Chem B; 2005 Feb; 109(6):2455-60. PubMed ID: 16851241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of alkanes on zeolites: a computational study of propane conversion reactions.
    Zheng X; Blowers P
    J Phys Chem A; 2005 Dec; 109(47):10734-41. PubMed ID: 16863122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.