BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12657291)

  • 1. Differences in nucleotide-binding site of isoapyrases deduced from tryptophan fluorescence.
    Espinosa V; Kettlun AM; Zanocco A; Cardemil E; Valenzuela MA
    Phytochemistry; 2003 May; 63(1):7-14. PubMed ID: 12657291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on ATP-diphosphohydrolase nucleotide-binding sites by intrinsic fluorescence.
    Kettlun AM; Espinosa V; Zanocco A; Valenzuela MA
    Braz J Med Biol Res; 2000 Jul; 33(7):725-9. PubMed ID: 10881046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potato tuber isoapyrases: substrate specificity, affinity labeling, and proteolytic susceptibility.
    Kettlun AM; Espinosa V; García L; Valenzuela MA
    Phytochemistry; 2005 May; 66(9):975-82. PubMed ID: 15896365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence studies of ATP-diphosphohydrolase from Solanum tuberosum var. Desirée.
    Espinosa V; Kettlun AM; Zanocco A; Cardemil E; Valenzuela MA
    Phytochemistry; 2000 Aug; 54(8):995-1001. PubMed ID: 11014304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characteristics of the nucleotide-binding site of Escherichia coli primary replicative helicase DnaB protein. Studies with ribose and base-modified fluorescent nucleotide analogs.
    Bujalowski W; Klonowska MM
    Biochemistry; 1994 Apr; 33(15):4682-94. PubMed ID: 8161526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative cooperativity in the binding of nucleotides to Escherichia coli replicative helicase DnaB protein. Interactions with fluorescent nucleotide analogs.
    Bujalowski W; Klonowska MM
    Biochemistry; 1993 Jun; 32(22):5888-900. PubMed ID: 8504109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues.
    Huang SG; Weisshart K; Fanning E
    Biochemistry; 1998 Nov; 37(44):15336-44. PubMed ID: 9799494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic fluorescence of the P-glycoprotein multidrug transporter: sensitivity of tryptophan residues to binding of drugs and nucleotides.
    Liu R; Siemiarczuk A; Sharom FJ
    Biochemistry; 2000 Dec; 39(48):14927-38. PubMed ID: 11101309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mapping of catalytic site with respect to alpha-subunit and noncatalytic site in yeast mitochondrial F1-ATPase using fluorescence resonance energy transfer.
    Divita G; Goody RS; Gautheron DC; Di Pietro A
    J Biol Chem; 1993 Jun; 268(18):13178-86. PubMed ID: 8514756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.
    Liu R; Sharom FJ
    Biochemistry; 1997 Mar; 36(10):2836-43. PubMed ID: 9062112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nucleotide-binding site of the Escherichia coli DnaC protein: molecular topography of DnaC protein-nucleotide cofactor complexes.
    Galletto R; Jezewska MJ; Maillard R; Bujalowski W
    Cell Biochem Biophys; 2005; 43(3):331-53. PubMed ID: 16244362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of six nucleotide cofactors to the hexameric helicase RepA protein of plasmid RSF1010. 1. Direct evidence of cooperative interactions between the nucleotide-binding sites of a hexameric helicase.
    Jezewska MJ; Lucius AL; Bujalowski W
    Biochemistry; 2005 Mar; 44(10):3865-76. PubMed ID: 15751962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for coupling free energy in ATPase to the myosin active site.
    Park S; Ajtai K; Burghardt TP
    Biochemistry; 1997 Mar; 36(11):3368-72. PubMed ID: 9116016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a second nucleotide binding site in rat elongation factor eEF-2 specific for adenylic nucleotides.
    Gonzalo P; Sontag B; Lavergne JP; Jault JM; Reboud JP
    Biochemistry; 2000 Nov; 39(44):13558-64. PubMed ID: 11063593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes in the unique loops bordering the ATP binding cleft of skeletal muscle myosin mediate energy transduction.
    Maruta S; Homma K
    J Biochem; 2000 Oct; 128(4):695-704. PubMed ID: 11011153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic tryptophan fluorescence of bovine liver adenosine kinase, characterization of ligand binding sites and conformational changes.
    Elalaoui A; Divita G; Maury G; Imbach JL; Goody RS
    Eur J Biochem; 1994 Apr; 221(2):839-46. PubMed ID: 8174564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escherichia coli isocitrate dehydrogenase kinase/phosphatase. Overproduction and kinetics of interaction with its substrates by using intrinsic fluorescence and fluorescent nucleotide analogues.
    Rittinger K; Negre D; Divita G; Scarabel M; Bonod-Bidaud C; Goody RS; Cozzone AJ; Cortay JC
    Eur J Biochem; 1996 Apr; 237(1):247-54. PubMed ID: 8620880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide binding to IAF-labelled Na+/K(+)-ATPase measured by steady state fluorescence quenching by TNP-ADP.
    Hellen EH; Pratap PR
    Biophys Chem; 1997 Dec; 69(2-3):107-24. PubMed ID: 9474751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.