BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 12657659)

  • 1. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans.
    Perez MA; Field-Fote EC; Floeter MK
    J Neurosci; 2003 Mar; 23(6):2014-8. PubMed ID: 12657659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury.
    Yamaguchi T; Fujiwara T; Tsai YA; Tang SC; Kawakami M; Mizuno K; Kodama M; Masakado Y; Liu M
    Exp Brain Res; 2016 Jun; 234(6):1469-78. PubMed ID: 26790423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial direct current stimulation modulates the spinal plasticity induced with patterned electrical stimulation.
    Fujiwara T; Tsuji T; Honaga K; Hase K; Ushiba J; Liu M
    Clin Neurophysiol; 2011 Sep; 122(9):1834-7. PubMed ID: 21377414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles.
    Thompson AK; Doran B; Stein RB
    Exp Brain Res; 2006 Apr; 170(2):216-26. PubMed ID: 16317575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.
    Kubota S; Hirano M; Morishita T; Uehara K; Funase K
    Neuroreport; 2015 Mar; 26(5):249-53. PubMed ID: 25719751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal plasticity with motor imagery practice.
    GrosprĂȘtre S; Lebon F; Papaxanthis C; Martin A
    J Physiol; 2019 Feb; 597(3):921-934. PubMed ID: 30417924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.
    Kido Thompson A; Stein RB
    Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons.
    Kubota S; Uehara K; Morishita T; Hirano M; Funase K
    J Electromyogr Kinesiol; 2014 Feb; 24(1):46-51. PubMed ID: 24321700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials.
    Knash ME; Kido A; Gorassini M; Chan KM; Stein RB
    Exp Brain Res; 2003 Dec; 153(3):366-77. PubMed ID: 14610631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convergence of ipsi- and contralateral muscle afferents on common interneurons mediating reciprocal inhibition of ankle plantarflexors in humans.
    Mrachacz-Kersting N; Geertsen SS; Stevenson AJ; Nielsen JB
    Exp Brain Res; 2017 May; 235(5):1555-1564. PubMed ID: 28258435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of H reflex of pretibial muscles and reciprocal Ia inhibition of soleus muscle during voluntary teeth clenching in humans.
    Takada Y; Miyahara T; Tanaka T; Ohyama T; Nakamura Y
    J Neurophysiol; 2000 Apr; 83(4):2063-70. PubMed ID: 10758116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reciprocal Ia inhibition between ankle flexors and extensors in man.
    Crone C; Hultborn H; Jespersen B; Nielsen J
    J Physiol; 1987 Aug; 389():163-85. PubMed ID: 3681725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans.
    Mummidisetty CK; Smith AC; Knikou M
    Clin Neurophysiol; 2013 Mar; 124(3):557-64. PubMed ID: 23046639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated and patterned stimulation of cutaneous reflex pathways amplifies spinal cord excitability.
    Pearcey GEP; Zehr EP
    J Neurophysiol; 2020 Aug; 124(2):342-351. PubMed ID: 32579412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    EnrĂ­quez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans.
    Perez MA; Lungholt BK; Nielsen JB
    J Physiol; 2005 Oct; 568(Pt 1):343-54. PubMed ID: 16051628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term plasticity of human spinal inhibitory circuits after isometric and isotonic ankle training.
    Jessop T; DePaola A; Casaletto L; Englard C; Knikou M
    Eur J Appl Physiol; 2013 Feb; 113(2):273-84. PubMed ID: 22684372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of cortical plasticity for reciprocal muscles by paired associative stimulation.
    Suzuki M; Kirimoto H; Sugawara K; Watanabe M; Shimizu S; Ishizaka I; Yamada S; Matsunaga A; Fukuda M; Onishi H
    Brain Behav; 2014; 4(6):822-32. PubMed ID: 25365805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive.
    Khaslavskaia S; Sinkjaer T
    Exp Brain Res; 2005 May; 162(4):497-502. PubMed ID: 15702321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.