BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 12657688)

  • 1. N-cadherin regulates ingrowth and laminar targeting of thalamocortical axons.
    Poskanzer K; Needleman LA; Bozdagi O; Huntley GW
    J Neurosci; 2003 Mar; 23(6):2294-305. PubMed ID: 12657688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Addition of tetrodotoxin alters the morphology of thalamocortical axons in organotypic cocultures.
    Wilkemeyer MF; Angelides KJ
    J Neurosci Res; 1996 Mar; 43(6):707-18. PubMed ID: 8984200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural (N)-cadherin at developing thalamocortical synapses provides an adhesion mechanism for the formation of somatopically organized connections.
    Huntley GW; Benson DL
    J Comp Neurol; 1999 May; 407(4):453-71. PubMed ID: 10235639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of geniculocortical projections to visual cortex in rat: evidence early ingrowth and synaptogenesis.
    Kageyama GH; Robertson RT
    J Comp Neurol; 1993 Sep; 335(1):123-48. PubMed ID: 7691903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical target depletion and ingrowth of geniculocortical axons: implications for cortical specification.
    Woo TU; Finlay BL
    Cereb Cortex; 1996; 6(3):457-69. PubMed ID: 8670671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of factors regulating lamina-specific growth of thalamocortical axons.
    Yamamoto N; Matsuyama Y; Harada A; Inui K; Murakami F; Hanamura K
    J Neurobiol; 2000 Jan; 42(1):56-68. PubMed ID: 10623901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of signals influencing the growth and termination of thalamocortical axons in organotypic culture.
    Molnár Z; Blakemore C
    Exp Neurol; 1999 Apr; 156(2):363-93. PubMed ID: 10328943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory mechanism by polysialic acid for lamina-specific branch formation of thalamocortical axons.
    Yamamoto N; Inui K; Matsuyama Y; Harada A; Hanamura K; Murakami F; Ruthazer ES; Rutishauser U; Seki T
    J Neurosci; 2000 Dec; 20(24):9145-51. PubMed ID: 11124992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the laminar distribution of thalamocortical axons and corticothalamic cell bodies in the visual cortex of the wallaby.
    Sheng XM; Marotte LR; Mark RF
    J Comp Neurol; 1991 May; 307(1):17-38. PubMed ID: 1713226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ephrins regulate the formation of terminal axonal arbors during the development of thalamocortical projections.
    Mann F; Peuckert C; Dehner F; Zhou R; Bolz J
    Development; 2002 Aug; 129(16):3945-55. PubMed ID: 12135931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of specific afferent connections in organotypic slice cultures from rat visual cortex cocultured with lateral geniculate nucleus.
    Bolz J; Novak N; Staiger V
    J Neurosci; 1992 Aug; 12(8):3054-70. PubMed ID: 1494945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of basal forebrain projections to visual cortex: DiI studies in rat.
    Calarco CA; Robertson RT
    J Comp Neurol; 1995 Apr; 354(4):608-26. PubMed ID: 7608340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity-dependent thalamocortical axon branching.
    Hayano Y; Yamamoto N
    Neuroscientist; 2008 Aug; 14(4):359-68. PubMed ID: 18660463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ephrin-A5 promotes the formation of terminal thalamocortical arbors.
    Uziel D; Mühlfriedel S; Bolz J
    Neuroreport; 2008 May; 19(8):877-81. PubMed ID: 18463505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental patterns of cadherin expression and localization in relation to compartmentalized thalamocortical terminations in rat barrel cortex.
    Gil OD; Needleman L; Huntley GW
    J Comp Neurol; 2002 Nov; 453(4):372-88. PubMed ID: 12389209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between growing thalamocortical afferent axons and the neocortical primordium in normal and reeler mutant mice.
    Yuasa S; Kitoh J; Kawamura K
    Anat Embryol (Berl); 1994 Aug; 190(2):137-54. PubMed ID: 7818087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki).
    Higashi S; Hioki K; Kurotani T; Kasim N; Molnár Z
    J Neurosci; 2005 Feb; 25(6):1395-406. PubMed ID: 15703393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex.
    Catalano SM; Robertson RT; Killackey HP
    J Comp Neurol; 1996 Mar; 367(1):36-53. PubMed ID: 8867282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures.
    Yamamoto N; Higashi S; Toyama K
    J Neurosci; 1997 May; 17(10):3653-63. PubMed ID: 9133388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats.
    Fukuda T; Kawano H; Ohyama K; Li HP; Takeda Y; Oohira A; Kawamura K
    J Comp Neurol; 1997 Jun; 382(2):141-52. PubMed ID: 9183685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.