These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 12658513)
21. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Ezeji TC; Qureshi N; Blaschek HP Appl Microbiol Biotechnol; 2004 Feb; 63(6):653-8. PubMed ID: 12910325 [TBL] [Abstract][Full Text] [Related]
22. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Alfenore S; Cameleyre X; Benbadis L; Bideaux C; Uribelarrea JL; Goma G; Molina-Jouve C; Guillouet SE Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304 [TBL] [Abstract][Full Text] [Related]
23. A new synthetic medium for the optimization of docosahexaenoic acid production in Crypthecodinium cohnii. Song P; Kuryatov A; Axelsen PH PLoS One; 2020; 15(3):e0229556. PubMed ID: 32196504 [TBL] [Abstract][Full Text] [Related]
24. Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Sijtsma L; de Swaaf ME Appl Microbiol Biotechnol; 2004 Apr; 64(2):146-53. PubMed ID: 14740186 [TBL] [Abstract][Full Text] [Related]
25. Syntrophy of Crypthecodinium cohnii and immobilized Zymomonas mobilis for docosahexaenoic acid production from sucrose-containing substrates. Strazdina I; Klavins L; Galinina N; Shvirksts K; Grube M; Stalidzans E; Kalnenieks U J Biotechnol; 2021 Sep; 338():63-70. PubMed ID: 34280360 [TBL] [Abstract][Full Text] [Related]
26. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043 [TBL] [Abstract][Full Text] [Related]
27. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. Fonseca GG; Gombert AK; Heinzle E; Wittmann C FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766 [TBL] [Abstract][Full Text] [Related]
28. Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Ratledge C; Kanagachandran K; Anderson AJ; Grantham DJ; Stephenson JC Lipids; 2001 Nov; 36(11):1241-6. PubMed ID: 11795857 [TBL] [Abstract][Full Text] [Related]
29. Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process. Chi Z; Hu B; Liu Y; Frear C; Wen Z; Chen S Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):805-15. PubMed ID: 18478436 [TBL] [Abstract][Full Text] [Related]
30. Perfusion culture process plus H2O2 stimulation for efficient astaxanthin production by Xanthophyllomyces dendrorhous. Liu YS; Wu JY Biotechnol Bioeng; 2007 Jun; 97(3):568-73. PubMed ID: 17149775 [TBL] [Abstract][Full Text] [Related]
31. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Schmidt RA; Wiebe MG; Eriksen NT Biotechnol Bioeng; 2005 Apr; 90(1):77-84. PubMed ID: 15723314 [TBL] [Abstract][Full Text] [Related]
32. Influence of feeding conditions on clavulanic acid production in fed-batch cultivation with medium containing glycerol. Teodoro JC; Baptista-Neto A; Cruz-Hernández IL; Hokka CO; Badino AC Appl Microbiol Biotechnol; 2006 Sep; 72(3):450-5. PubMed ID: 16395544 [TBL] [Abstract][Full Text] [Related]
33. Mutation breeding of extracellular polysaccharide-producing microalga Crypthecodinium cohnii by a novel mutagenesis with atmospheric and room temperature plasma. Liu B; Sun Z; Ma X; Yang B; Jiang Y; Wei D; Chen F Int J Mol Sci; 2015 Apr; 16(4):8201-12. PubMed ID: 25872142 [TBL] [Abstract][Full Text] [Related]
34. Utilization of lignocellulosic biomass towards the production of omega-3 fatty acids by the heterotrophic marine microalga Crypthecodinium cohnii. Karnaouri A; Chalima A; Kalogiannis KG; Varamogianni-Mamatsi D; Lappas A; Topakas E Bioresour Technol; 2020 May; 303():122899. PubMed ID: 32028216 [TBL] [Abstract][Full Text] [Related]
35. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
36. Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. Kulpreecha S; Boonruangthavorn A; Meksiriporn B; Thongchul N J Biosci Bioeng; 2009 Mar; 107(3):240-5. PubMed ID: 19269585 [TBL] [Abstract][Full Text] [Related]
37. Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. Hantelmann K; Kollecker M; Hüll D; Hitzmann B; Scheper T J Biotechnol; 2006 Feb; 121(3):410-7. PubMed ID: 16125265 [TBL] [Abstract][Full Text] [Related]
38. Effect of mixed organic substrate on alpha-tocopherol production by Euglena gracilis in photoheterotrophic culture. Fujita T; Aoyagi H; Ogbonna JC; Tanaka H Appl Microbiol Biotechnol; 2008 Jun; 79(3):371-8. PubMed ID: 18389233 [TBL] [Abstract][Full Text] [Related]
39. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Rosa SM; Soria MA; Vélez CG; Galvagno MA Bioresour Technol; 2010 Apr; 101(7):2367-74. PubMed ID: 20015637 [TBL] [Abstract][Full Text] [Related]
40. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Qu L; Ren LJ; Sun GN; Ji XJ; Nie ZK; Huang H Bioprocess Biosyst Eng; 2013 Dec; 36(12):1905-12. PubMed ID: 23673897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]