These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 12658517)
1. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Ferreira BS; Calado CR; van Keulen F; Fonseca LP; Cabral JM; da Fonseca MM Appl Microbiol Biotechnol; 2003 Mar; 61(1):69-76. PubMed ID: 12658517 [TBL] [Abstract][Full Text] [Related]
2. Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways. Ferreira BS; Calado CR; van Keulen F; Fonseca LP; Cabral JM; da Fonseca MM J Biotechnol; 2004 Apr; 109(1-2):159-67. PubMed ID: 15063624 [TBL] [Abstract][Full Text] [Related]
3. Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain. Calado CR; Ferreira BS; da Fonseca MM; Cabral JM; Fonseca LP J Biotechnol; 2004 Apr; 109(1-2):147-58. PubMed ID: 15063623 [TBL] [Abstract][Full Text] [Related]
4. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain. Calado CR; Almeida C; Cabral JM; Fonseca LP J Biosci Bioeng; 2003; 96(2):141-8. PubMed ID: 16233499 [TBL] [Abstract][Full Text] [Related]
5. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter. Kang HA; Kang WK; Go SM; Rezaee A; Krishna SH; Rhee SK; Kim JY Biotechnol Bioeng; 2005 Mar; 89(6):619-29. PubMed ID: 15696522 [TBL] [Abstract][Full Text] [Related]
6. Production of wild-type and peptide fusion cutinases by recombinant Saccharomyces cerevisiae MM01 strains. Calado CR; Mannesse M; Egmond M; Cabral JM; Fonseca LP Biotechnol Bioeng; 2002 Jun; 78(6):692-8. PubMed ID: 11992534 [TBL] [Abstract][Full Text] [Related]
8. Expression of hepatitis B surface antigen S domain in recombinant Saccharomyces cerevisiae using GAL1 promoter. Kim EJ; Park YK; Lim HK; Park YC; Seo JH J Biotechnol; 2009 May; 141(3-4):155-9. PubMed ID: 19433220 [TBL] [Abstract][Full Text] [Related]
9. Efficient production of recombinant DNA proteins in Saccharomyces cerevisiae by controlled high-cell-density fermentation. Alberghina L; Porro D; Martegani E; Ranzi BM Biotechnol Appl Biochem; 1991 Aug; 14(1):82-92. PubMed ID: 1910586 [TBL] [Abstract][Full Text] [Related]
10. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043 [TBL] [Abstract][Full Text] [Related]
11. [High-cell density cultivation of recombinant Escherichia coli for production of TRAIL by using a 2-stage feeding strategy]. Zhang Y; Shen YL; Xia XX; Sun AY; Wei DZ; Zhou JS; Zhang GJ; Wang LH; Jiao BH Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):408-13. PubMed ID: 15971615 [TBL] [Abstract][Full Text] [Related]
12. Enhanced cutinase production with Thermobifida fusca by two-stage pH control strategy. Du GC; Zhang SL; Hua ZZ; Zhu Y; Chen J Biotechnol J; 2007 Mar; 2(3):365-9. PubMed ID: 17309045 [TBL] [Abstract][Full Text] [Related]
13. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. Vohra A; Satyanarayana T J Appl Microbiol; 2004; 97(3):471-6. PubMed ID: 15281926 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Peter Smits H; Hauf J; Müller S; Hobley TJ; Zimmermann FK; Hahn-Hägerdal B; Nielsen J; Olsson L Yeast; 2000 Oct; 16(14):1325-34. PubMed ID: 11015729 [TBL] [Abstract][Full Text] [Related]
15. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G; Younesi H; Syahidah Ku Ismail K Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [TBL] [Abstract][Full Text] [Related]
16. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Olofsson K; Rudolf A; Lidén G J Biotechnol; 2008 Mar; 134(1-2):112-20. PubMed ID: 18294716 [TBL] [Abstract][Full Text] [Related]
17. Production of 2-phenylethanol from L-phenylalanine by a stress tolerant Saccharomyces cerevisiae strain. Eshkol N; Sendovski M; Bahalul M; Katz-Ezov T; Kashi Y; Fishman A J Appl Microbiol; 2009 Feb; 106(2):534-42. PubMed ID: 19200319 [TBL] [Abstract][Full Text] [Related]
18. Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae. Zhang J; Cai Y; Du G; Chen J; Wang M; Kang Z J Microbiol; 2017 Jul; 55(7):538-544. PubMed ID: 28664516 [TBL] [Abstract][Full Text] [Related]
19. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. van Maris AJ; Abbott DA; Bellissimi E; van den Brink J; Kuyper M; Luttik MA; Wisselink HW; Scheffers WA; van Dijken JP; Pronk JT Antonie Van Leeuwenhoek; 2006 Nov; 90(4):391-418. PubMed ID: 17033882 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Ohgren K; Bengtsson O; Gorwa-Grauslund MF; Galbe M; Hahn-Hägerdal B; Zacchi G J Biotechnol; 2006 Dec; 126(4):488-98. PubMed ID: 16828190 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]