These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12658519)
1. Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Roden EE; Wetzel RG Microb Ecol; 2003 Mar; 45(3):252-8. PubMed ID: 12658519 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic and physiological diversity of dissimilatory ferric iron reducers in sediments of the polluted Scheldt estuary, Northwest Europe. Lin B; Hyacinthe C; Bonneville S; Braster M; Van Cappellen P; Röling WF Environ Microbiol; 2007 Aug; 9(8):1956-68. PubMed ID: 17635542 [TBL] [Abstract][Full Text] [Related]
3. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. Kappler A; Benz M; Schink B; Brune A FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349 [TBL] [Abstract][Full Text] [Related]
4. Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. Muehe EM; Gerhardt S; Schink B; Kappler A FEMS Microbiol Ecol; 2009 Dec; 70(3):335-43. PubMed ID: 19732145 [TBL] [Abstract][Full Text] [Related]
5. Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Pollock J; Weber KA; Lack J; Achenbach LA; Mormile MR; Coates JD Appl Microbiol Biotechnol; 2007 Dec; 77(4):927-34. PubMed ID: 17943280 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Weber KA; Urrutia MM; Churchill PF; Kukkadapu RK; Roden EE Environ Microbiol; 2006 Jan; 8(1):100-13. PubMed ID: 16343326 [TBL] [Abstract][Full Text] [Related]
7. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. Finke N; Vandieken V; Jørgensen BB FEMS Microbiol Ecol; 2007 Jan; 59(1):10-22. PubMed ID: 17069623 [TBL] [Abstract][Full Text] [Related]
8. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Jiang S; Park S; Yoon Y; Lee JH; Wu WM; Phuoc Dan N; Sadowsky MJ; Hur HG Environ Sci Technol; 2013 Sep; 47(17):10078-84. PubMed ID: 23919295 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic metabolism of immediate methane precursors in Lake Mendota. Winfrey MR; Zeikus JG Appl Environ Microbiol; 1979 Feb; 37(2):244-53. PubMed ID: 434807 [TBL] [Abstract][Full Text] [Related]
10. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296 [TBL] [Abstract][Full Text] [Related]
11. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA. Schwarz JI; Lueders T; Eckert W; Conrad R Environ Microbiol; 2007 Jan; 9(1):223-37. PubMed ID: 17227427 [TBL] [Abstract][Full Text] [Related]
12. Interaction of acetogens and methanogens in anaerobic freshwater sediments. Jones JG; Simon BM Appl Environ Microbiol; 1985 Apr; 49(4):944-8. PubMed ID: 4004224 [TBL] [Abstract][Full Text] [Related]
13. Iron and arsenic release from aquifer solids in response to biostimulation. McLean JE; Dupont RR; Sorensen DL J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439 [TBL] [Abstract][Full Text] [Related]
14. Competition of Fe(III) reduction and methanogenesis in an acidic fen. Reiche M; Torburg G; Küsel K FEMS Microbiol Ecol; 2008 Jul; 65(1):88-101. PubMed ID: 18559015 [TBL] [Abstract][Full Text] [Related]
15. Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Lomans BP; Op den Camp HJ; Pol A; van der Drift C; Vogels GD Appl Environ Microbiol; 1999 May; 65(5):2116-21. PubMed ID: 10224009 [TBL] [Abstract][Full Text] [Related]
16. Repeated anaerobic microbial redox cycling of iron. Coby AJ; Picardal F; Shelobolina E; Xu H; Roden EE Appl Environ Microbiol; 2011 Sep; 77(17):6036-42. PubMed ID: 21742920 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment. Yang S; Yoshida N; Baba D; Katayama A Chemosphere; 2008 Mar; 71(2):328-36. PubMed ID: 17950776 [TBL] [Abstract][Full Text] [Related]
18. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783 [TBL] [Abstract][Full Text] [Related]
19. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393 [TBL] [Abstract][Full Text] [Related]
20. Effect of iron on the sensitivity of hydrogen, acetate, and butyrate metabolism to inhibition by long-chain fatty acids in vegetable-oil-enriched freshwater sediments. Li Z; Wrenn BA; Venosa AD Water Res; 2005 Aug; 39(13):3109-19. PubMed ID: 16000206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]