These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 12658520)
1. Effects of temperature and turbulence on the predator-prey interactions between a heterotrophic flagellate and a marine bacterium. Delaney MP Microb Ecol; 2003 Mar; 45(3):218-25. PubMed ID: 12658520 [TBL] [Abstract][Full Text] [Related]
2. Grazing Characteristics and Growth Efficiencies at Two Different Temperatures for Three Nanoflagellates Fed with Vibrio Bacteria at Three Different Concentrations. Ishigaki T; Sleigh MA Microb Ecol; 2001 Apr; 41(3):264-271. PubMed ID: 11391464 [TBL] [Abstract][Full Text] [Related]
3. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. Jeong HJ; Seong KA; Yoo YD; Kim TH; Kang NS; Kim S; Park JY; Kim JS; Kim GH; Song JY J Eukaryot Microbiol; 2008; 55(4):271-88. PubMed ID: 18681841 [TBL] [Abstract][Full Text] [Related]
4. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates. Christaki U; Courties C; Karayanni H; Giannakourou A; Maravelias C; Kormas KA; Lebaron P Microb Ecol; 2002 Apr; 43(3):341-52. PubMed ID: 12037612 [TBL] [Abstract][Full Text] [Related]
5. Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community. Matz C; Jürgens K Microb Ecol; 2003 May; 45(4):384-98. PubMed ID: 12704556 [TBL] [Abstract][Full Text] [Related]
6. Feeding and growth of the marine heterotrophic nanoflagellates, Procryptobia sorokini and Paraphysomonas imperforata on a bacterium, Pseudoalteromonas sp. with an inducible defence against grazing. Tophøj J; Wollenberg RD; Sondergaard TE; Eriksen NT PLoS One; 2018; 13(4):e0195935. PubMed ID: 29652905 [TBL] [Abstract][Full Text] [Related]
7. Effects of temperature on growth rate and gross growth efficiency of an Antarctic bacterivorous protist. Rose JM; Vora NM; Countway PD; Gast RJ; Caron DA ISME J; 2009 Feb; 3(2):252-60. PubMed ID: 18843301 [TBL] [Abstract][Full Text] [Related]
8. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus). Christaki U; Vázquez-Domínguez E; Courties C; Lebaron P Environ Microbiol; 2005 Aug; 7(8):1200-10. PubMed ID: 16011757 [TBL] [Abstract][Full Text] [Related]
9. Effects of temperature on predation by the stinkbugs Picromerus bidens and Podisus maculiventris (Heteroptera: Pentatomidae) on noctuid caterpillars. Mahdian K; Vantornhout I; Tirry L; De Clercq P Bull Entomol Res; 2006 Oct; 96(5):489-96. PubMed ID: 17092360 [TBL] [Abstract][Full Text] [Related]
10. Role of Microcolony Formation in the Protistan Grazing Defense of the Aquatic Bacterium Pseudomonas sp. MWH1. Hahn MW; Moore ER; Höfle MG Microb Ecol; 2000 Apr; 39(3):175-185. PubMed ID: 12035094 [TBL] [Abstract][Full Text] [Related]
11. Direct and indirect effects of temperature on the population dynamics and ecosystem functioning of aquatic microbial ecosystems. Beveridge OS; Petchey OL; Humphries S J Anim Ecol; 2010 Nov; 79(6):1324-31. PubMed ID: 20722873 [TBL] [Abstract][Full Text] [Related]
12. Control of microbial communities by the macrofauna: a sensitive interaction in the context of extreme summer temperatures? Viergutz C; Kathol M; Norf H; Arndt H; Weitere M Oecologia; 2007 Feb; 151(1):115-24. PubMed ID: 16964501 [TBL] [Abstract][Full Text] [Related]
13. A common soil flagellate (Cercomonas sp.) grows slowly when feeding on the bacterium Rhodococcus fascians in isolation, but does not discriminate against it in a mixed culture with Sphingopyxis witflariensis. Lekfeldt JD; Rønn R FEMS Microbiol Ecol; 2008 Jul; 65(1):113-24. PubMed ID: 18462400 [TBL] [Abstract][Full Text] [Related]
14. Differential grazing of two heterotrophic nanoflagellates on marine Synechococcus strains. Zwirglmaier K; Spence E; Zubkov MV; Scanlan DJ; Mann NH Environ Microbiol; 2009 Jul; 11(7):1767-76. PubMed ID: 19508559 [TBL] [Abstract][Full Text] [Related]
15. Modulation of microbial predator-prey dynamics by phosphorus availability: growth patterns and survival strategies of bacterial phylogenetic clades. Salcher MM; Hofer J; Hornák K; Jezbera J; Sonntag B; Vrba J; Simek K; Posch T FEMS Microbiol Ecol; 2007 Apr; 60(1):40-50. PubMed ID: 17250752 [TBL] [Abstract][Full Text] [Related]
16. Trophic interactions within the microbial food web in a tropical floodplain lake (Laguna Bufeos, Bolivia). Rejas D; Muylaert K; De Meester L Rev Biol Trop; 2005; 53(1-2):85-96. PubMed ID: 17354422 [TBL] [Abstract][Full Text] [Related]
17. Effects of Temperature on Two Psychrophilic Ecotypes of a Heterotrophic Nanoflagellate, Paraphysomonas imperforata. Choi JW; Peters F Appl Environ Microbiol; 1992 Feb; 58(2):593-9. PubMed ID: 16348647 [TBL] [Abstract][Full Text] [Related]
18. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin. Bettarel Y; Amblard C; Sime-Ngando T; Carrias JF; Sargos D; Garabétian F; Lavandier P Microb Ecol; 2003 Feb; 45(2):119-27. PubMed ID: 12545309 [TBL] [Abstract][Full Text] [Related]
19. Consequences of size structure in the prey for predator-prey dynamics: the composite functional response. Rudolf VH J Anim Ecol; 2008 May; 77(3):520-8. PubMed ID: 18284478 [TBL] [Abstract][Full Text] [Related]
20. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]