BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12658521)

  • 1. Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm.
    Orvain F; Galois R; Barnard C; Sylvestre A; Blanchard G; Sauriau PG
    Microb Ecol; 2003 Mar; 45(3):237-51. PubMed ID: 12658521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial stabilization of riverine sediments by extracellular polymeric substances.
    Gerbersdorf SU; Jancke T; Westrich B; Paterson DM
    Geobiology; 2008 Jan; 6(1):57-69. PubMed ID: 18380886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time of Flight-Secondary Ion Mass Spectrometry on isolated extracellular fractions and intact biofilms of three species of benthic diatoms.
    de Brouwer JF; Cooksey KE; Wigglesworth-Cooksey B; Staal MJ; Stal LJ; Avci R
    J Microbiol Methods; 2006 Jun; 65(3):562-72. PubMed ID: 16289390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal mediation of ripple mobility.
    Friend PL; Lucas CH; Holligan PM; Collins MB
    Geobiology; 2008 Jan; 6(1):70-82. PubMed ID: 18380887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial extracellular polymeric substances (EPS) in fresh water sediments.
    Gerbersdorf SU; Westrich B; Paterson DM
    Microb Ecol; 2009 Aug; 58(2):334-49. PubMed ID: 19242746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific.
    Tarasov VG
    Adv Mar Biol; 2006; 50():267-421. PubMed ID: 16782453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms.
    de Brouwer JF; Wolfstein K; Ruddy GK; Jones TE; Stal LJ
    Microb Ecol; 2005 May; 49(4):501-12. PubMed ID: 16052376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments.
    Gerbersdorf SU; Manz W; Paterson DM
    FEMS Microbiol Ecol; 2008 Nov; 66(2):282-94. PubMed ID: 19049651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria.
    Bruckner CG; Rehm C; Grossart HP; Kroth PG
    Environ Microbiol; 2011 Apr; 13(4):1052-63. PubMed ID: 21244599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation.
    Jakob T; Wagner H; Stehfest K; Wilhelm C
    J Exp Bot; 2007; 58(8):2101-12. PubMed ID: 17483116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences between aerobic and anaerobic degradation of microphytobenthic biofilm-derived organic matter within intertidal sediments.
    McKew BA; Dumbrell AJ; Taylor JD; McGenity TJ; Underwood GJ
    FEMS Microbiol Ecol; 2013 Jun; 84(3):495-509. PubMed ID: 23346920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling the functioning of a coupled microphytobenthic-EPS-bacterial system in intertidal mudflats.
    Rakotomalala C; Guizien K; Grangeré K; Lefebvre S; Dupuy C; Orvain F
    Mar Environ Res; 2019 Sep; 150():104754. PubMed ID: 31299542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diatom-derived carbohydrates as factors affecting bacterial community composition in estuarine sediments.
    Haynes K; Hofmann TA; Smith CJ; Ball AS; Underwood GJ; Osborn AM
    Appl Environ Microbiol; 2007 Oct; 73(19):6112-24. PubMed ID: 17675437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical composition and changes of extracellular polysaccharides (ECPS) produced during microphytobenthic biofilm development (Marennes-Oléron, France).
    Pierre G; Graber M; Rafiliposon BA; Dupuy C; Orvain F; De Crignis M; Maugard T
    Microb Ecol; 2012 Jan; 63(1):157-69. PubMed ID: 22001998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematodes stimulate biomass accumulation in a multispecies diatom biofilm.
    D'Hondt AS; Stock W; Blommaert L; Moens T; Sabbe K
    Mar Environ Res; 2018 Sep; 140():78-89. PubMed ID: 29891387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae.
    Lubarsky HV; Hubas C; Chocholek M; Larson F; Manz W; Paterson DM; Gerbersdorf SU
    PLoS One; 2010 Nov; 5(11):e13794. PubMed ID: 21072186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom).
    Huesemann MH; Hausmann TS; Bartha R; Aksoy M; Weissman JC; Benemann JR
    Appl Biochem Biotechnol; 2009 Jun; 157(3):507-26. PubMed ID: 18597048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption.
    Aguilera A; Souza-Egipsy V; Martín-Uriz PS; Amils R
    Aquat Toxicol; 2008 Jul; 88(4):257-66. PubMed ID: 18554732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate and transport of Irgarol 1051 in a modular estuarine mesocosm.
    Sapozhnikova Y; Pennington P; Wirth E; Fulton M
    J Environ Monit; 2009 Apr; 11(4):808-14. PubMed ID: 19557235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the effect of water-soluble fractions of heavy-oil on coastal marine organisms using enclosed ecosystems, mesocosms.
    Ohwada K; Nishimura M; Wada M; Nomura H; Shibata A; Okamoto K; Toyoda K; Yoshida A; Takada H; Yamada M
    Mar Pollut Bull; 2003; 47(1-6):78-84. PubMed ID: 12787601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.