BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12658525)

  • 1. Incorporation of radiolabeled leucine into protein to estimate bacterial production in plant litter, sediment, epiphytic biofilms, and water samples.
    Buesing N; Gessner MO
    Microb Ecol; 2003 Mar; 45(3):291-301. PubMed ID: 12658525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [3H]Leucine incorporation method as a tool to measure secondary production by periphytic bacteria associated to the roots of floating aquatic macrophyte.
    Miranda MR; Guimarães JR; Coelho-Souza AS
    J Microbiol Methods; 2007 Oct; 71(1):23-31. PubMed ID: 17765986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the [3H]leucine incorporation technique for quantification of bacterial secondary production associated with decaying wetland plant litter.
    Gillies JE; Kuehn KA; Francoeur SN; Neely RK
    Appl Environ Microbiol; 2006 Sep; 72(9):5948-56. PubMed ID: 16957215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of the [(14)C]leucine incorporation technique to measure bacterial production in river sediments and the epiphyton.
    Fischer H; Pusch M
    Appl Environ Microbiol; 1999 Oct; 65(10):4411-8. PubMed ID: 10508068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial communities in contrasting freshwater marsh microhabitats.
    Buesing N; Filippini M; Bürgmann H; Gessner MO
    FEMS Microbiol Ecol; 2009 Jul; 69(1):84-97. PubMed ID: 19496822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments.
    Gerbersdorf SU; Manz W; Paterson DM
    FEMS Microbiol Ecol; 2008 Nov; 66(2):282-94. PubMed ID: 19049651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benthic bacterial response to variable estuarine water inputs.
    Manini E; Luna GM; Danovaro R
    FEMS Microbiol Ecol; 2004 Nov; 50(3):185-94. PubMed ID: 19712359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The leucine incorporation method estimates bacterial growth equally well in both oxic and anoxic lake waters.
    Bastviken D; Tranvik L
    Appl Environ Microbiol; 2001 Jul; 67(7):2916-21. PubMed ID: 11425702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benthic bacterial production and protozoan predation in a silty freshwater environment.
    Wieltschnig C; Fischer UR; Kirschner AK; Velimirov B
    Microb Ecol; 2003 Jul; 46(1):62-72. PubMed ID: 12739079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring Bacterial Production in Deep-Sea Sediments using 3H-Thymidine Incorporation: Ecological Significance.
    Dixon JL; Turley CM
    Microb Ecol; 2001 Dec; 42(4):549-561. PubMed ID: 12024238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery and quantification of bacterial cells associated with streambed sediments.
    Amalfitano S; Fazi S
    J Microbiol Methods; 2008 Oct; 75(2):237-43. PubMed ID: 18602952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large differences in the fraction of active bacteria in plankton, sediments, and biofilm.
    Haglund AL; Törnblom E; Boström B; Tranvik L
    Microb Ecol; 2002 Mar; 43(2):232-41. PubMed ID: 12023730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonism between bacteria and fungi on decomposing aquatic plant litter.
    Mille-Lindblom C; Tranvik LJ
    Microb Ecol; 2003 Feb; 45(2):173-82. PubMed ID: 12545315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction of extracellular polymeric substances from extreme acidic microbial biofilms.
    Aguilera A; Souza-Egipsy V; San Martín-Uriz P; Amils R
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1079-88. PubMed ID: 18330567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colonization of overlaying water by bacteria from dry river sediments.
    Fazi S; Amalfitano S; Piccini C; Zoppini A; Puddu A; Pernthaler J
    Environ Microbiol; 2008 Oct; 10(10):2760-72. PubMed ID: 18643927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport and distribution of lindane and simazine in a riverine environment: measurements in bed sediments and modelling.
    Allan IJ; House WA; Parker A; Carter JE
    Pest Manag Sci; 2004 May; 60(5):417-33. PubMed ID: 15154508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urea transformation of wetland microbial communities.
    Thorén AK
    Microb Ecol; 2007 Feb; 53(2):221-32. PubMed ID: 17268879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification.
    Milenkovski S; Bååth E; Lindgren PE; Berglund O
    Ecotoxicology; 2010 Feb; 19(2):285-94. PubMed ID: 19768538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of the 3H-leucine incorporation technique to measure heterotrophic activity associated with biofilm on the blades of the seaweed Sargassum spp.
    Coelho-Souza SA; Miranda MR; Salgado LT; Coutinho R; Guimaraes JR
    Microb Ecol; 2013 Feb; 65(2):424-36. PubMed ID: 22965803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.