These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 12659136)
1. Blood compatibility of hydrophilic polymers. Ikada Y; Iwata H; Horii F; Matsunaga T; Taniguchi M; Suzuki M; Taki W; Yamagata S; Yonekawa Y; Handa H J Biomed Mater Res; 1981 Sep; 15(5):697-718. PubMed ID: 12659136 [TBL] [Abstract][Full Text] [Related]
2. In vivo protein adsorption on polymers: visualization of adsorbed proteins on vascular implants in dogs. Nojiri C; Okano T; Koyanagi H; Nakahama S; Park KD; Kim SW J Biomater Sci Polym Ed; 1992; 4(2):75-88. PubMed ID: 1486066 [TBL] [Abstract][Full Text] [Related]
3. Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces. Nojiri C; Okano T; Jacobs HA; Park KD; Mohammad SF; Olsen DB; Kim SW J Biomed Mater Res; 1990 Sep; 24(9):1151-71. PubMed ID: 2211743 [TBL] [Abstract][Full Text] [Related]
4. Platelet deposition onto polymeric surfaces during shunting. Fujimoto K; Minato M; Tadokoro H; Ikada Y J Biomed Mater Res; 1993 Mar; 27(3):335-43. PubMed ID: 8360203 [TBL] [Abstract][Full Text] [Related]
5. Plasma protein adsorption pattern and tissue-implant reaction of poly(vinyl alcohol)/carboxymethyl-chitosan blend films. Wang LC; Chen XG; Xu QC; Liu CS; Yu le J; Zhou YM J Biomater Sci Polym Ed; 2008; 19(1):113-29. PubMed ID: 18177558 [TBL] [Abstract][Full Text] [Related]
6. Blood compatibility of SPUU-PEO-heparin graft copolymers. Park KD; Kim WG; Jacobs H; Okano T; Kim SW J Biomed Mater Res; 1992 Jun; 26(6):739-56. PubMed ID: 1527098 [TBL] [Abstract][Full Text] [Related]
7. Adsorption of proteins from plasma to a series of hydrophilic-hydrophobic copolymers. II. Compositional analysis with the prelabeled protein technique. Horbett TA J Biomed Mater Res; 1981 Sep; 15(5):673-95. PubMed ID: 12659135 [TBL] [Abstract][Full Text] [Related]
8. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials. Sagnella S; Mai-Ngam K Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667 [TBL] [Abstract][Full Text] [Related]
9. Fibrinogen adsorption, platelet adhesion and thrombin generation at heparinized surfaces exposed to flowing blood. Keuren JF; Wielders SJ; Willems GM; Morra M; Lindhout T Thromb Haemost; 2002 Apr; 87(4):742-7. PubMed ID: 12008960 [TBL] [Abstract][Full Text] [Related]
10. Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. Nie S; Xue J; Lu Y; Liu Y; Wang D; Sun S; Ran F; Zhao C Colloids Surf B Biointerfaces; 2012 Dec; 100():116-25. PubMed ID: 22763005 [TBL] [Abstract][Full Text] [Related]
11. Transient in vivo protein adsorption onto polymeric biomaterials. Ihlenfeld JV; Cooper SL J Biomed Mater Res; 1979 Jul; 13(4):577-91. PubMed ID: 88452 [TBL] [Abstract][Full Text] [Related]
12. The interaction of macromolecular solutions with macromolecular monolayers adsorbed on a hydrophobic surface. Fromageot HP; Groves JN; Sears AR; Brown JF J Biomed Mater Res; 1976 May; 10(3):455-69. PubMed ID: 5457 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of polymeric biomaterials: utilization of cyclodextrins for blood compatibility improvement. Zhao X; Courtney JM J Biomed Mater Res A; 2007 Mar; 80(3):539-53. PubMed ID: 17019727 [TBL] [Abstract][Full Text] [Related]
14. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes. Poussard L; Burel F; Couvercelle JP; Merhi Y; Tabrizian M; Bunel C Biomaterials; 2004 Aug; 25(17):3473-83. PubMed ID: 15020121 [TBL] [Abstract][Full Text] [Related]
15. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of copolymers using dendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesion activity. Nie N; Tu Q; Wang JC; Chao F; Liu R; Zhang Y; Liu W; Wang J Colloids Surf B Biointerfaces; 2012 Sep; 97():226-35. PubMed ID: 22609608 [TBL] [Abstract][Full Text] [Related]
17. In vivo biocompatibility of sulfonated PEO-grafted polyurethanes for polymer heart valve and vascular graft. Han DK; Park K; Park KD; Ahn KD; Kim YH Artif Organs; 2006 Dec; 30(12):955-9. PubMed ID: 17181836 [TBL] [Abstract][Full Text] [Related]
18. The kinetics of baboon fibrinogen adsorption to polymers: in vitro and in vivo studies. Horbett TA; Cheng CM; Ratner BD; Hoffman AS; Hanson SR J Biomed Mater Res; 1986; 20(6):739-72. PubMed ID: 3722213 [TBL] [Abstract][Full Text] [Related]
19. Ex vivo platelet deposition on fibronectin-preadsorbed surfaces. Collins WE; Mosher DF; Diwan AR; Murthy KD; Simmons SR; Albrecht RM; Cooper SL Scanning Microsc; 1987 Dec; 1(4):1669-76. PubMed ID: 3433057 [TBL] [Abstract][Full Text] [Related]
20. Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting. Liu SX; Kim JT; Kim S J Food Sci; 2008 Apr; 73(3):E143-50. PubMed ID: 18387109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]