These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12659202)

  • 1. Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures.
    Lu CJ; Whiting J; Sacks RD; Zellers ET
    Anal Chem; 2003 Mar; 75(6):1400-9. PubMed ID: 12659202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed analysis of complex indoor VOC mixtures by vacuum-outlet GC with air carrier gas and programmable retention.
    Grall AJ; Zellers ET; Sacks RD
    Environ Sci Technol; 2001 Jan; 35(1):163-9. PubMed ID: 11352005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid determination of ETS markers with a prototype field-portable GC employing a microsensor array detector.
    Zhong Q; Veeneman RA; Steinecker WH; Jia C; Batterman SA; Zellers ET
    J Environ Monit; 2007 May; 9(5):440-8. PubMed ID: 17492089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chamber evaluation of a portable GC with tunable retention and microsensor-array detection for indoor air quality monitoring.
    Lu CJ; Jin C; Zellers ET
    J Environ Monit; 2006 Feb; 8(2):270-8. PubMed ID: 16470259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personal monitoring instrument for the selective measurement of multiple organic vapors.
    Park J; Zhang GZ; Zellers ET
    AIHAJ; 2000; 61(2):192-204. PubMed ID: 10782191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dual-adsorbent preconcentrator for a portable indoor-VOC microsensor system.
    Lu CJ; Zellers ET
    Anal Chem; 2001 Jul; 73(14):3449-57. PubMed ID: 11476247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a high-performance portable GC with a chemiresistor array detector.
    Zhong Q; Steinecker WH; Zellers ET
    Analyst; 2009 Feb; 134(2):283-93. PubMed ID: 19173051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabricated gas chromatograph for the selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations in complex mixtures.
    Kim SK; Chang H; Zellers ET
    Anal Chem; 2011 Sep; 83(18):7198-206. PubMed ID: 21859085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-stage preconcentrator/focuser module designed to enable trace level determinations of trichloroethylene in indoor air with a microfabricated gas chromatograph.
    Sukaew T; Chang H; Serrano G; Zellers ET
    Analyst; 2011 Apr; 136(8):1664-74. PubMed ID: 21359357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A portable gas chromatograph for real-time monitoring of aromatic volatile organic compounds in air samples.
    You DW; Seon YS; Jang Y; Bang J; Oh JS; Jung KW
    J Chromatogr A; 2020 Aug; 1625():461267. PubMed ID: 32709320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-adsorbent preconcentration/focusing module for portable-GC/microsensor-array analysis of complex vapor mixtures.
    Lu CJ; Zellers ET
    Analyst; 2002 Aug; 127(8):1061-8. PubMed ID: 12195947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabricated gas chromatograph for on-site determination of trichloroethylene in indoor air arising from vapor intrusion. 1. Field evaluation.
    Kim SK; Burris DR; Chang H; Bryant-Genevier J; Zellers ET
    Environ Sci Technol; 2012 Jun; 46(11):6065-72. PubMed ID: 22616709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A portable, high-speed, vacuum-outlet GC vapor analyzer employing air as carrier gas and surface acoustic wave detection.
    Whiting JJ; Lu CJ; Zellers ET; Sacks RD
    Anal Chem; 2001 Oct; 73(19):4668-75. PubMed ID: 11605845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance characteristics of a new prototype for a portable GC using ambient air as carrier gas for on-site analysis.
    Sanchez JM; Sacks RD
    J Sep Sci; 2007 May; 30(7):1052-60. PubMed ID: 17566340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays.
    Zellers ET; Batterman SA; Han M; Patrash SJ
    Anal Chem; 1995 Mar; 67(6):1092-106. PubMed ID: 7717524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation and evaluation of a personal electronic nose for selective multivapor analysis.
    Hsieh MD; Zellers ET
    J Occup Environ Hyg; 2004 Mar; 1(3):149-60. PubMed ID: 15204872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis.
    Park J; Groves WA; Zellers ET
    Anal Chem; 1999 Sep; 71(17):3877-86. PubMed ID: 10489533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing a limit of recognition for a vapor sensor array.
    Zellers ET; Park J; Hsu T; Groves WA
    Anal Chem; 1998 Oct; 70(19):4191-201. PubMed ID: 9784753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-generation hybrid MEMS gas chromatograph.
    Lu CJ; Steinecker WH; Tian WC; Oborny MC; Nichols JM; Agah M; Potkay JA; Chan HK; Driscoll J; Sacks RD; Wise KD; Pang SW; Zellers ET
    Lab Chip; 2005 Oct; 5(10):1123-31. PubMed ID: 16175269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring.
    Patel SV; Tolley WK
    Analyst; 2014 Aug; 139(15):3770-80. PubMed ID: 24903107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.