These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 12659304)

  • 1. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti.
    Hillyer JF; Schmidt SL; Christensen BM
    J Parasitol; 2003 Feb; 89(1):62-9. PubMed ID: 12659304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria.
    Hillyer JF; Schmidt SL; Christensen BM
    Cell Tissue Res; 2003 Jul; 313(1):117-27. PubMed ID: 12838409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosquito phenoloxidase and defensin colocalize in melanization innate immune responses.
    Hillyer JF; Christensen BM
    J Histochem Cytochem; 2005 Jun; 53(6):689-98. PubMed ID: 15928318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phagocytosis of latex beads and bacteria by hemocytes of the triatomine bug Rhodnius prolixus (Hemiptera: Reduvidae).
    Borges AR; Santos PN; Furtado AF; Figueiredo RC
    Micron; 2008 Jun; 39(4):486-94. PubMed ID: 17368036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides.
    Coggins SA; Estévez-Lao TY; Hillyer JF
    Dev Comp Immunol; 2012 Jul; 37(3-4):390-401. PubMed ID: 22326457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmodium gallinaceum: sporozoite invasion of Aedes aegypti salivary glands is inhibited by anti-gland antibodies and by lectins.
    Barreau C; Touray M; Pimenta PF; Miller LH; Vernick KD
    Exp Parasitol; 1995 Nov; 81(3):332-43. PubMed ID: 7498430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling infection responses in the haemocytes of the mosquito, Aedes aegypti.
    Bartholomay LC; Mayhew GF; Fuchs JF; Rocheleau TA; Erickson SM; Aliota MT; Christensen BM
    Insect Mol Biol; 2007 Dec; 16(6):761-76. PubMed ID: 18093005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innate Cellular Immune Responses in Aedes caspius (Diptera: Culicidae) Mosquitoes.
    Soliman DE; Farid HA; Hammad RE; Gad AM; Bartholomay LC
    J Med Entomol; 2016 Mar; 53(2):262-7. PubMed ID: 26792848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes.
    Warburg A; Shtern A; Cohen N; Dahan N
    Microbes Infect; 2007 Feb; 9(2):192-9. PubMed ID: 17224290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antibacterial innate immune response by the mosquito Aedes aegypti is mediated by hemocytes and independent of Gram type and pathogenicity.
    Hillyer JF; Schmidt SL; Christensen BM
    Microbes Infect; 2004 Apr; 6(5):448-59. PubMed ID: 15109959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti.
    Bartholomay LC; Fuchs JF; Cheng LL; Beck ET; Vizioli J; Lowenberger C; Christensen BM
    Insect Mol Biol; 2004 Apr; 13(2):125-32. PubMed ID: 15056359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti.
    Hillyer JF; Christensen BM
    Histochem Cell Biol; 2002 May; 117(5):431-40. PubMed ID: 12029490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced efficacy of the immune melanization response in mosquitoes infected by malaria parasites.
    Boëte C; Paul RE; Koella JC
    Parasitology; 2002 Aug; 125(Pt 2):93-8. PubMed ID: 12211612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wolbachia pipientis: an expanding bag of tricks to explore for disease control.
    Cook PE; McGraw EA
    Trends Parasitol; 2010 Aug; 26(8):373-5. PubMed ID: 20647151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemocyte-mediated melanization of microfilariae in Aedes aegypti.
    Christensen BM; Forton KF
    J Parasitol; 1986 Apr; 72(2):220-5. PubMed ID: 3734991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the different functions of multiple peptidoglycan recognition proteins in the immune response against bacteria in the mosquito, Armigeres subalbatus.
    Wang S; Beerntsen BT
    Insect Biochem Mol Biol; 2013 Jun; 43(6):533-43. PubMed ID: 23541606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional implications of the peptidoglycan recognition proteins in the immunity of the yellow fever mosquito, Aedes aegypti.
    Wang S; Beerntsen BT
    Insect Mol Biol; 2015 Jun; 24(3):293-310. PubMed ID: 25588548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmodium gallinaceum: antibodies to circumsporozoite protein prevent sporozoites from invading the salivary glands of Aedes aegypti.
    Warburg A; Touray M; Krettli AU; Miller LH
    Exp Parasitol; 1992 Nov; 75(3):303-7. PubMed ID: 1426132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural and functional characterization of circulating hemocytes from the freshwater crayfish Astacus leptodactylus: cell types and their role after in vivo artificial non-self challenge.
    Giulianini PG; Bierti M; Lorenzon S; Battistella S; Ferrero EA
    Micron; 2007; 38(1):49-57. PubMed ID: 16839768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.