These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12659920)

  • 1. A theoretical study of acoustic cavitation produced by "positive-only" and "negative-only" pressure waves in relation to in vivo studies.
    Church CC
    Ultrasound Med Biol; 2003 Feb; 29(2):319-30. PubMed ID: 12659920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioeffects of positive and negative acoustic pressures in vivo.
    Bailey MR; Dalecki D; Child SZ; Raeman CH; Penney DP; Blackstock DT; Carstensen EL
    J Acoust Soc Am; 1996 Dec; 100(6):3941-6. PubMed ID: 8969491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavitation induced by asymmetric, distorted pulses of ultrasound: a biological test.
    Aymé EJ; Carstensen EL
    Ultrasound Med Biol; 1989; 15(1):61-6. PubMed ID: 2922882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Killing of Drosophila larvae by the fields of an electrohydraulic lithotripter.
    Carstensen EL; Campbell DS; Hoffman D; Child SZ; Aymé-Bellegarda EJ
    Ultrasound Med Biol; 1990; 16(7):687-98. PubMed ID: 2126407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lung damage from exposure to the fields of an electrohydraulic lithotripter.
    Hartman C; Child SZ; Mayer R; Schenk E; Carstensen EL
    Ultrasound Med Biol; 1990; 16(7):675-9. PubMed ID: 2281556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound.
    Yoshizawa S; Yasuda J; Umemura S
    J Acoust Soc Am; 2013 Aug; 134(2):1515-20. PubMed ID: 23927191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lung damage from exposure to pulsed ultrasound.
    Child SZ; Hartman CL; Schery LA; Carstensen EL
    Ultrasound Med Biol; 1990; 16(8):817-25. PubMed ID: 2095012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic pressure amplitude thresholds for rectified diffusion in gaseous microbubbles in biological tissue.
    Lewin PA; Bjørnø L
    J Acoust Soc Am; 1981 Mar; 69(3):846-52. PubMed ID: 7240564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological effects of shock waves: cavitation by shock waves in piglet liver.
    Delius M; Denk R; Berding C; Liebich HG; Jordan M; Brendel W
    Ultrasound Med Biol; 1990; 16(5):467-72. PubMed ID: 2238253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure levels for ultrasonic cavitation in the mouse neonate.
    Lee CS; Frizzell LA
    Ultrasound Med Biol; 1988; 14(8):735-42. PubMed ID: 3212840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound.
    Roy RA; Madanshetty SI; Apfel RE
    J Acoust Soc Am; 1990 Jun; 87(6):2451-8. PubMed ID: 2373791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of cavitation activity by different shockwave pulsing regimes.
    Huber P; Debus J; Jöchle K; Simiantonakis I; Jenne J; Rastert R; Spoo J; Lorenz WJ; Wannenmacher M
    Phys Med Biol; 1999 Jun; 44(6):1427-37. PubMed ID: 10498515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse lung damage from exposure to 30 kHz ultrasound.
    O'Brien WD; Zachary JF
    Ultrasound Med Biol; 1994; 20(3):287-97. PubMed ID: 8059490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of acoustic cavitation in the heart with microbubble contrast agents in vivo: a mechanism for ultrasound-induced arrhythmias.
    Rota C; Raeman CH; Child SZ; Dalecki D
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2958-64. PubMed ID: 17139752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysis of cells in Elodea leaves by pulsed and continuous wave ultrasound.
    Carstensen EL; Child SZ; Crane C; Miller MW; Parker KJ
    Ultrasound Med Biol; 1990; 16(2):167-73. PubMed ID: 2327043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure threshold for shock wave induced renal hemorrhage.
    Mayer R; Schenk E; Child S; Norton S; Cox C; Hartman C; Cox C; Carstensen E
    J Urol; 1990 Dec; 144(6):1505-9. PubMed ID: 2231957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of inertial cavitation from acoustic radiation force impulse imaging and implications for the mechanical index.
    Church CC; Labuda C; Nightingale K
    Ultrasound Med Biol; 2015 Feb; 41(2):472-85. PubMed ID: 25592457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubbles in an acoustic field: an overview.
    Ashokkumar M; Lee J; Kentish S; Grieser F
    Ultrason Sonochem; 2007 Apr; 14(4):470-5. PubMed ID: 17234444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.