BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12660328)

  • 1. Control of oxalate formation from L-hydroxyproline in liver mitochondria.
    Takayama T; Fujita K; Suzuki K; Sakaguchi M; Fujie M; Nagai E; Watanabe S; Ichiyama A; Ogawa Y
    J Am Soc Nephrol; 2003 Apr; 14(4):939-46. PubMed ID: 12660328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxalate synthesis in mammals: properties and subcellular distribution of serine:pyruvate/alanine:glyoxylate aminotransferase in the liver.
    Ichiyama A; Xue HH; Oda T; Uchida C; Sugiyama T; Maeda-Nakai E; Sato K; Nagai E; Watanabe S; Takayama T
    Mol Urol; 2000; 4(4):333-40. PubMed ID: 11156700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on a unique organelle localization of a liver enzyme, serine:pyruvate (or alanine:glyoxylate) aminotransferase.
    Ichiyama A
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(5):274-86. PubMed ID: 21558762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary hyperoxaluria type 1 in Japan.
    Ichiyama A; Oda T; Maeda-Nakai E
    Cell Biochem Biophys; 2000; 32 Spring():171-6. PubMed ID: 11330044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycolate and glyoxylate metabolism in HepG2 cells.
    Baker PR; Cramer SD; Kennedy M; Assimos DG; Holmes RP
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1359-65. PubMed ID: 15240345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glyoxylate reductase: Definitive identification in human liver mitochondria, its importance for the compartment-specific detoxification of glyoxylate.
    Garrelfs SF; Chornyi S; Te Brinke H; Ruiter J; Groothoff J; Wanders RJA
    J Inherit Metab Dis; 2024 Mar; 47(2):280-288. PubMed ID: 38200664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flux of the L-serine metabolism in rabbit, human, and dog livers. Substantial contributions of both mitochondrial and peroxisomal serine:pyruvate/alanine:glyoxylate aminotransferase.
    Xue HH; Sakaguchi T; Fujie M; Ogawa H; Ichiyama A
    J Biol Chem; 1999 Jun; 274(23):16028-33. PubMed ID: 10347152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of vitamin B6 deficiency on alanine: glyoxylate aminotransferase isoenzymes in rat liver.
    Takada Y; Mori T; Noguchi T
    Arch Biochem Biophys; 1984 Feb; 229(1):1-6. PubMed ID: 6703688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial hydroxyproline metabolism: implications for primary hyperoxaluria.
    Knight J; Holmes RP
    Am J Nephrol; 2005; 25(2):171-5. PubMed ID: 15849464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systemic Alanine Glyoxylate Aminotransferase mRNA Improves Glyoxylate Metabolism in a Mouse Model of Primary Hyperoxaluria Type 1.
    Kukreja A; Lasaro M; Cobaugh C; Forbes C; Tang JP; Gao X; Martin-Higueras C; Pey AL; Salido E; Sobolov S; Subramanian RR
    Nucleic Acid Ther; 2019 Apr; 29(2):104-113. PubMed ID: 30676254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic alanine-glyoxylate aminotransferase activity and oxalate metabolism in vitamin B6 deficient rats.
    Nishijima S; Sugaya K; Morozumi M; Hatano T; Ogawa Y
    J Urol; 2003 Feb; 169(2):683-6. PubMed ID: 12544342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-dependent degradation of a mutant serine: pyruvate/alanine:glyoxylate aminotransferase in a primary hyperoxaluria type 1 case.
    Nishiyama K; Funai T; Yokota S; Ichiyama A
    J Cell Biol; 1993 Dec; 123(5):1237-48. PubMed ID: 8245128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay.
    Fargue S; Knight J; Holmes RP; Rumsby G; Danpure CJ
    Biochim Biophys Acta; 2016 Jun; 1862(6):1055-62. PubMed ID: 26854734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary hyperoxalurias: disorders of glyoxylate detoxification.
    Salido E; Pey AL; Rodriguez R; Lorenzo V
    Biochim Biophys Acta; 2012 Sep; 1822(9):1453-64. PubMed ID: 22446032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of oxalate from hydroxypyruvate, serine, glycolate and glyoxylate in the rat.
    Gambardella RL; Richardson KE
    Biochim Biophys Acta; 1978 Dec; 544(2):315-28. PubMed ID: 719002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of mammalian aminotransferases utilizing glyoxylate or pyruvate as amino acceptor. Peroxisomal and mitochondrial asparagine aminotransferase.
    Noguchi T; Fujiwara S
    J Biol Chem; 1988 Jan; 263(1):182-6. PubMed ID: 3121607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelationships in rats among dietary vitamin B6, glycine and hydroxyproline. Effects of oxalate, glyoxylate, glycolate, and glycine on liver enzymes.
    Ribaya JD; Gershoff SN
    J Nutr; 1979 Jan; 109(1):171-83. PubMed ID: 430210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux of the L-serine metabolism in rat liver. The predominant contribution of serine dehydratase.
    Xue HH; Fujie M; Sakaguchi T; Oda T; Ogawa H; Kneer NM; Lardy HA; Ichiyama A
    J Biol Chem; 1999 Jun; 274(23):16020-7. PubMed ID: 10347151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathways of hepatic oxalate synthesis and their regulation.
    Poore RE; Hurst CH; Assimos DG; Holmes RP
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C289-94. PubMed ID: 9038835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fidelity of translation initiation of mRNA for the precursor of rat mitochondrial serine:pyruvate/alanine:glyoxylate aminotransferase.
    Funai T; Ichiyama A
    J Biochem; 1995 May; 117(5):1008-16. PubMed ID: 8586612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.