BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 12660355)

  • 1. Properties of exocytotic response in vertebrate photoreceptors.
    Kreft M; Krizaj D; Grilc S; Zorec R
    J Neurophysiol; 2003 Jul; 90(1):218-25. PubMed ID: 12660355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms, pools, and sites of spontaneous vesicle release at synapses of rod and cone photoreceptors.
    Cork KM; Van Hook MJ; Thoreson WB
    Eur J Neurosci; 2016 Aug; 44(3):2015-27. PubMed ID: 27255664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine inhibits voltage-dependent Ca2+ influx in cone photoreceptor terminals of the tiger salamander retina.
    Stella SL; Hu WD; Vila A; Brecha NC
    J Neurosci Res; 2007 Apr; 85(5):1126-37. PubMed ID: 17304584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina.
    Van Hook MJ; Thoreson WB
    Synapse; 2014 Nov; 68(11):518-28. PubMed ID: 25049035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse.
    Wölfel M; Schneggenburger R
    J Neurosci; 2003 Aug; 23(18):7059-68. PubMed ID: 12904466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paired-pulse depression at photoreceptor synapses.
    Rabl K; Cadetti L; Thoreson WB
    J Neurosci; 2006 Mar; 26(9):2555-63. PubMed ID: 16510733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of exocytosis is faster in cones than in rods.
    Rabl K; Cadetti L; Thoreson WB
    J Neurosci; 2005 May; 25(18):4633-40. PubMed ID: 15872111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunocytochemical analysis of photoreceptors in the tiger salamander retina.
    Zhang J; Wu SM
    Vision Res; 2009 Jan; 49(1):64-73. PubMed ID: 18977238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells.
    Neves G; Lagnado L
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):181-202. PubMed ID: 9925888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of release kinetics and glutamate receptor properties in shaping rod-cone differences in EPSC kinetics in the salamander retina.
    Cadetti L; Tranchina D; Thoreson WB
    J Physiol; 2005 Dec; 569(Pt 3):773-88. PubMed ID: 16223761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Location of release sites and calcium-activated chloride channels relative to calcium channels at the photoreceptor ribbon synapse.
    Mercer AJ; Rabl K; Riccardi GE; Brecha NC; Stella SL; Thoreson WB
    J Neurophysiol; 2011 Jan; 105(1):321-35. PubMed ID: 21084687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas.
    Berntson AK; Morgans CW
    J Vis; 2003; 3(4):274-80. PubMed ID: 12803536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms contributing to tonic release at the cone photoreceptor ribbon synapse.
    Innocenti B; Heidelberger R
    J Neurophysiol; 2008 Jan; 99(1):25-36. PubMed ID: 17989244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles.
    Chen M; Van Hook MJ; Zenisek D; Thoreson WB
    J Neurosci; 2013 Jan; 33(5):2071-86. PubMed ID: 23365244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of synaptic transfer from rods and cones to horizontal cells in the salamander retina.
    Thoreson WB; Tranchina D; Witkovsky P
    Neuroscience; 2003; 122(3):785-98. PubMed ID: 14622921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous adenosine reduces glutamatergic output from rods through activation of A2-like adenosine receptors.
    Stella SL; Bryson EJ; Cadetti L; Thoreson WB
    J Neurophysiol; 2003 Jul; 90(1):165-74. PubMed ID: 12843308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Goalpha labels ON bipolar cells in the tiger salamander retina.
    Zhang J; Wu SM
    J Comp Neurol; 2003 Jun; 461(2):276-89. PubMed ID: 12724843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone photoreceptors respond to their own glutamate release in the tiger salamander.
    Picaud S; Larsson HP; Wellis DP; Lecar H; Werblin F
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9417-21. PubMed ID: 7568144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse.
    Thoreson WB; Rabl K; Townes-Anderson E; Heidelberger R
    Neuron; 2004 May; 42(4):595-605. PubMed ID: 15157421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.