These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 12660779)

  • 1. An electronic Mach-Zehnder interferometer.
    Ji Y; Chung Y; Sprinzak D; Heiblum M; Mahalu D; Shtrikman H
    Nature; 2003 Mar; 422(6930):415-8. PubMed ID: 12660779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference between two indistinguishable electrons from independent sources.
    Neder I; Ofek N; Chung Y; Heiblum M; Mahalu D; Umansky V
    Nature; 2007 Jul; 448(7151):333-7. PubMed ID: 17637665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-visibility optofluidic Mach-Zehnder interferometer.
    Testa G; Huang Y; Sarro PM; Zeni L; Bernini R
    Opt Lett; 2010 May; 35(10):1584-6. PubMed ID: 20479816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise dephasing in edge states of the integer quantum Hall regime.
    Roulleau P; Portier F; Roche P; Cavanna A; Faini G; Gennser U; Mailly D
    Phys Rev Lett; 2008 Oct; 101(18):186803. PubMed ID: 18999848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling behavior of electron decoherence in a graphene Mach-Zehnder interferometer.
    Jo M; Lee JM; Assouline A; Brasseur P; Watanabe K; Taniguchi T; Roche P; Glattli DC; Kumada N; Parmentier FD; Sim H-; Roulleau P
    Nat Commun; 2022 Sep; 13(1):5473. PubMed ID: 36115841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mach-Zehnder interferometry using spin- and valley-polarized quantum Hall edge states in graphene.
    Wei DS; van der Sar T; Sanchez-Yamagishi JD; Watanabe K; Taniguchi T; Jarillo-Herrero P; Halperin BI; Yacoby A
    Sci Adv; 2017 Aug; 3(8):e1700600. PubMed ID: 28835920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-Particle Interference in an Electronic Mach-Zehnder Interferometer.
    Kotilahti J; Burset P; Moskalets M; Flindt C
    Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions in electronic Mach-Zehnder interferometers with copropagating edge channels.
    Chirolli L; Taddei F; Fazio R; Giovannetti V
    Phys Rev Lett; 2013 Jul; 111(3):036801. PubMed ID: 23909349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of electronic interferometers in the nonlinear regime.
    Neder I; Ginossar E
    Phys Rev Lett; 2008 May; 100(19):196806. PubMed ID: 18518476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum Hall Valley Splitters and a Tunable Mach-Zehnder Interferometer in Graphene.
    Jo M; Brasseur P; Assouline A; Fleury G; Sim HS; Watanabe K; Taniguchi T; Dumnernpanich W; Roche P; Glattli DC; Kumada N; Parmentier FD; Roulleau P
    Phys Rev Lett; 2021 Apr; 126(14):146803. PubMed ID: 33891444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of the coherence length of edge states in the integer quantum Hall regime.
    Roulleau P; Portier F; Roche P; Cavanna A; Faini G; Gennser U; Mailly D
    Phys Rev Lett; 2008 Mar; 100(12):126802. PubMed ID: 18517896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mach-Zehnder interferometer in the fractional quantum Hall regime.
    Ponomarenko VV; Averin DV
    Phys Rev Lett; 2007 Aug; 99(6):066803. PubMed ID: 17930852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dephasing in a Mach-Zehnder Interferometer by an Ohmic Contact.
    Idrisov EG; Levkivskyi IP; Sukhorukov EV
    Phys Rev Lett; 2018 Jul; 121(2):026802. PubMed ID: 30085740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of time-reversal symmetry breaking lengths in an InGaAs interferometer array.
    Ren SL; Heremans JJ; Vijeyaragunathan S; Mishima TD; Santos MB
    J Phys Condens Matter; 2015 May; 27(18):185801. PubMed ID: 25880699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent simulation and analytical modelling of electronic Mach-Zehnder interferometry with edge-states wave packets.
    Beggi A; Bordone P; Buscemi F; Bertoni A
    J Phys Condens Matter; 2015 Dec; 27(47):475301. PubMed ID: 26548374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium dephasing in an electronic Mach-Zehnder interferometer.
    Youn SC; Lee HW; Sim HS
    Phys Rev Lett; 2008 May; 100(19):196807. PubMed ID: 18518477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of a quarter of an electron charge at the nu = 5/2 quantum Hall state.
    Dolev M; Heiblum M; Umansky V; Stern A; Mahalu D
    Nature; 2008 Apr; 452(7189):829-34. PubMed ID: 18421345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melting of Interference in the Fractional Quantum Hall Effect: Appearance of Neutral Modes.
    Bhattacharyya R; Banerjee M; Heiblum M; Mahalu D; Umansky V
    Phys Rev Lett; 2019 Jun; 122(24):246801. PubMed ID: 31322402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A complementarity experiment with an interferometer at the quantum-classical boundary.
    Bertet P; Osnaghi S; Rauschenbeutel A; Nogues G; Auffeves A; Brune M; Raimond JM; Haroche S
    Nature; 2001 May; 411(6834):166-70. PubMed ID: 11346787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of Interference in Quantum Hall Mach-Zehnder Geometry by Upstream Neutral Modes.
    Goldstein M; Gefen Y
    Phys Rev Lett; 2016 Dec; 117(27):276804. PubMed ID: 28084761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.