These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Folding dynamics and mechanism of beta-hairpin formation. Muñoz V; Thompson PA; Hofrichter J; Eaton WA Nature; 1997 Nov; 390(6656):196-9. PubMed ID: 9367160 [TBL] [Abstract][Full Text] [Related]
3. Structural and folding properties of a lattice prion model. Wind AF; Kemp JP; Ermoshkin AV; Chen JZ Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 1):031909. PubMed ID: 12366154 [TBL] [Abstract][Full Text] [Related]
4. The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation. Shimada J; Kussell EL; Shakhnovich EI J Mol Biol; 2001 Apr; 308(1):79-95. PubMed ID: 11302709 [TBL] [Abstract][Full Text] [Related]
5. The unfolded ensemble and folding mechanism of the C-terminal GB1 beta-hairpin. Bonomi M; Branduardi D; Gervasio FL; Parrinello M J Am Chem Soc; 2008 Oct; 130(42):13938-44. PubMed ID: 18811160 [TBL] [Abstract][Full Text] [Related]
6. Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides. Morozov AN; Lin SH J Phys Chem B; 2006 Oct; 110(41):20555-61. PubMed ID: 17034243 [TBL] [Abstract][Full Text] [Related]
7. Complex folding pathways in a simple beta-hairpin. Wei G; Mousseau N; Derreumaux P Proteins; 2004 Aug; 56(3):464-74. PubMed ID: 15229880 [TBL] [Abstract][Full Text] [Related]
8. Folding thermodynamics of three beta-sheet peptides: a model study. Irbäck A; Sjunnesson F Proteins; 2004 Jul; 56(1):110-6. PubMed ID: 15162491 [TBL] [Abstract][Full Text] [Related]
9. Minimum model for the alpha-helix-beta-hairpin transition in proteins. Imamura H; Chen JZ Proteins; 2007 May; 67(2):459-68. PubMed ID: 17295339 [TBL] [Abstract][Full Text] [Related]
10. beta-Hairpins, alpha-helices, and the intermediates among the secondary structures in the energy landscape of a peptide from a distal beta-hairpin of SH3 domain. Ikeda K; Galzitskaya OV; Nakamura H; Higo J J Comput Chem; 2003 Feb; 24(3):310-8. PubMed ID: 12548722 [TBL] [Abstract][Full Text] [Related]
11. Free energy surfaces of beta-hairpin and alpha-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model. Felts AK; Harano Y; Gallicchio E; Levy RM Proteins; 2004 Aug; 56(2):310-21. PubMed ID: 15211514 [TBL] [Abstract][Full Text] [Related]
12. Theoretical characterization of alpha-helix and beta-hairpin folding kinetics. Daidone I; D'Abramo M; Di Nola A; Amadei A J Am Chem Soc; 2005 Oct; 127(42):14825-32. PubMed ID: 16231936 [TBL] [Abstract][Full Text] [Related]
13. Direct analysis of backbone-backbone hydrogen bond formation in protein folding transition states. Yang X; Wang M; Fitzgerald MC J Mol Biol; 2006 Oct; 363(2):506-19. PubMed ID: 16963082 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulations of folding processes of a beta-hairpin in an implicit solvent. Chen C; Xiao Y Phys Biol; 2006 Aug; 3(3):161-71. PubMed ID: 17021380 [TBL] [Abstract][Full Text] [Related]
15. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model. Garcia LG; Araújo AF Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745 [TBL] [Abstract][Full Text] [Related]
16. Theory of kinetic partitioning in protein folding with possible applications to prions. Abkevich VI; Gutin AM; Shakhnovich EI Proteins; 1998 Jun; 31(4):335-44. PubMed ID: 9626694 [TBL] [Abstract][Full Text] [Related]
17. Free energy determinants of secondary structure formation: III. beta-turns and their role in protein folding. Yang AS; Hitz B; Honig B J Mol Biol; 1996 Jun; 259(4):873-82. PubMed ID: 8683589 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analysis of molecular dynamics simulations reveals changes in the denatured state and switch of folding pathways upon single-point mutation of a beta-sheet miniprotein. Muff S; Caflisch A Proteins; 2008 Mar; 70(4):1185-95. PubMed ID: 17847092 [TBL] [Abstract][Full Text] [Related]
19. Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. Langedijk JP; Fuentes G; Boshuizen R; Bonvin AM J Mol Biol; 2006 Jul; 360(4):907-20. PubMed ID: 16782127 [TBL] [Abstract][Full Text] [Related]
20. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations. Collet O; Chipot C J Am Chem Soc; 2003 May; 125(21):6573-80. PubMed ID: 12785798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]