These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Representations and rates of approximation of real-valued Boolean functions by neural networks. Kůrková V; Savický P; Hlavácková K Neural Netw; 1998 Jun; 11(4):651-659. PubMed ID: 12662803 [TBL] [Abstract][Full Text] [Related]
4. Specification of training sets and the number of hidden neurons for multilayer perceptrons. Camargo LS; Yoneyama T Neural Comput; 2001 Dec; 13(12):2673-80. PubMed ID: 11705406 [TBL] [Abstract][Full Text] [Related]
5. A Regularity Condition of the Information Matrix of a Multilayer Perceptron Network. Fukumizu K Neural Netw; 1996 Jul; 9(5):871-879. PubMed ID: 12662569 [TBL] [Abstract][Full Text] [Related]
6. An Integral Representation of Functions Using Three-layered Networks and Their Approximation Bounds. Murata N Neural Netw; 1996 Aug; 9(6):947-956. PubMed ID: 12662574 [TBL] [Abstract][Full Text] [Related]
7. On the geometric convergence of neural approximations. Lavretsky E IEEE Trans Neural Netw; 2002; 13(2):274-82. PubMed ID: 18244430 [TBL] [Abstract][Full Text] [Related]
8. Approximation by fully complex multilayer perceptrons. Kim T; Adali T Neural Comput; 2003 Jul; 15(7):1641-66. PubMed ID: 12816570 [TBL] [Abstract][Full Text] [Related]
9. Probabilistic lower bounds for approximation by shallow perceptron networks. Kůrková V; Sanguineti M Neural Netw; 2017 Jul; 91():34-41. PubMed ID: 28482227 [TBL] [Abstract][Full Text] [Related]
10. Multilayer perceptrons: approximation order and necessary number of hidden units. Trenn S IEEE Trans Neural Netw; 2008 May; 19(5):836-44. PubMed ID: 18467212 [TBL] [Abstract][Full Text] [Related]
12. Extreme Learning Machine for Multilayer Perceptron. Tang J; Deng C; Huang GB IEEE Trans Neural Netw Learn Syst; 2016 Apr; 27(4):809-21. PubMed ID: 25966483 [TBL] [Abstract][Full Text] [Related]
13. A Numerical Implementation of Kolmogorov's Superpositions. Sprecher DA Neural Netw; 1996 Jul; 9(5):765-772. PubMed ID: 12662561 [TBL] [Abstract][Full Text] [Related]
14. Training multilayer perceptron classifiers based on a modified support vector method. Suykens JK; Vandewalle J IEEE Trans Neural Netw; 1999; 10(4):907-11. PubMed ID: 18252586 [TBL] [Abstract][Full Text] [Related]
15. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Auer P; Burgsteiner H; Maass W Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524 [TBL] [Abstract][Full Text] [Related]
16. AMITE: A Novel Polynomial Expansion for Analyzing Neural Network Nonlinearities. Sanchirico MJ; Jiao X; Nataraj C IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5732-5744. PubMed ID: 34905496 [TBL] [Abstract][Full Text] [Related]
17. On the approximation by single hidden layer feedforward neural networks with fixed weights. Guliyev NJ; Ismailov VE Neural Netw; 2018 Feb; 98():296-304. PubMed ID: 29301110 [TBL] [Abstract][Full Text] [Related]
18. Performance Bounds for Single Layer Threshold Networks when Tracking a Drifting Adversary. Kuh A; Tian X Neural Netw; 1997 Jul; 10(5):897-906. PubMed ID: 12662878 [TBL] [Abstract][Full Text] [Related]
19. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. Igelnik B; Pao YH IEEE Trans Neural Netw; 1995; 6(6):1320-9. PubMed ID: 18263425 [TBL] [Abstract][Full Text] [Related]
20. Predictive control of nonlinear systems based on identification by backpropagation networks. Hao J; Vandewalle J; Tan S Int J Neural Syst; 1994 Dec; 5(4):335-44. PubMed ID: 7711964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]