These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12662760)

  • 1. Walknet-a biologically inspired network to control six-legged walking.
    Cruse H; Kindermann T; Schumm M; Dean J; Schmitz J
    Neural Netw; 1998 Oct; 11(7-8):1435-1447. PubMed ID: 12662760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Walknet, a bio-inspired controller for hexapod walking.
    Schilling M; Hoinville T; Schmitz J; Cruse H
    Biol Cybern; 2013 Aug; 107(4):397-419. PubMed ID: 23824506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biologically inspired controller for hexapod walking: simple solutions by exploiting physical properties.
    Schmitz J; Dean J; Kindermann T; Schumm M; Cruse H
    Biol Bull; 2001 Apr; 200(2):195-200. PubMed ID: 11341583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour-based modelling of hexapod locomotion: linking biology and technical application.
    Dürr V; Schmitz J; Cruse H
    Arthropod Struct Dev; 2004 Jul; 33(3):237-50. PubMed ID: 18089037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexapod Walking: an expansion to Walknet dealing with leg amputations and force oscillations.
    Schilling M; Cruse H; Arena P
    Biol Cybern; 2007 Mar; 96(3):323-40. PubMed ID: 17106698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
    von Twickel A; Büschges A; Pasemann F
    Biol Cybern; 2011 Feb; 104(1-2):95-119. PubMed ID: 21327828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor-Skill Learning in an Insect Inspired Neuro-Computational Control System.
    Arena E; Arena P; Strauss R; Patané L
    Front Neurorobot; 2017; 11():12. PubMed ID: 28337138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans.
    Grabowska M; Toth TI; Smarandache-Wellmann C; Daun-Gruhn S
    J Comput Neurosci; 2015 Jun; 38(3):601-16. PubMed ID: 25904469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network.
    Cruse H; Schilling M
    Front Psychol; 2013; 4():324. PubMed ID: 23785343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animats: computer-simulated animals in behavioral research.
    Watts JM
    J Anim Sci; 1998 Oct; 76(10):2596-604. PubMed ID: 9814899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular artificial neural net for controlling a six-legged walking system.
    Cruse H; Bartling C; Cymbalyuk G; Dean J; Dreifert M
    Biol Cybern; 1995; 72(5):421-30. PubMed ID: 7734551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Template for the neural control of directed stepping generalized to all legs of MantisBot.
    Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2017 Jun; 12(4):045001. PubMed ID: 28422047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hexapod walker using a heterarchical architecture for action selection.
    Schilling M; Paskarbeit J; Hoinville T; Hüffmeier A; Schneider A; Schmitz J; Cruse H
    Front Comput Neurosci; 2013; 7():126. PubMed ID: 24062682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects.
    Grabowska M; Godlewska E; Schmidt J; Daun-Gruhn S
    J Exp Biol; 2012 Dec; 215(Pt 24):4255-66. PubMed ID: 22972892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.
    Büschges A; Wolf H
    J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple analytical model reveals the functional role of embodied sensorimotor interaction in hexapod gaits.
    Ambe Y; Aoi S; Nachstedt T; Manoonpong P; Wörgötter F; Matsuno F
    PLoS One; 2018; 13(2):e0192469. PubMed ID: 29489831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic simulation of insect walking.
    Ekeberg O; Blümel M; Büschges A
    Arthropod Struct Dev; 2004 Jul; 33(3):287-300. PubMed ID: 18089040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving a Behavioral Repertoire for a Walking Robot.
    Cully A; Mouret JB
    Evol Comput; 2016; 24(1):59-88. PubMed ID: 25585055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.