These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization. Kilic C; Ohi N; Gu Y; Gross JN IEEE Robot Autom Lett; 2021 Jul; 6(3):4782-4789. PubMed ID: 33969183 [TBL] [Abstract][Full Text] [Related]
4. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis. Shaukat A; Blacker PC; Spiteri C; Gao Y Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27879625 [TBL] [Abstract][Full Text] [Related]
5. Autonomous Navigation of a Center-Articulated and Hydrostatic Transmission Rover using a Modified Pure Pursuit Algorithm in a Cotton Field. Fue K; Porter W; Barnes E; Li C; Rains G Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784690 [TBL] [Abstract][Full Text] [Related]
6. Visual SLAM-Based Robotic Mapping Method for Planetary Construction. Hong S; Bangunharcana A; Park JM; Choi M; Shin HS Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833786 [TBL] [Abstract][Full Text] [Related]
7. Model Predictive Control of a Novel Wheeled-Legged Planetary Rover for Trajectory Tracking. He J; Sun Y; Yang L; Gao F Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684785 [TBL] [Abstract][Full Text] [Related]
9. Strategies for Deploying a Sensor Network to Explore Planetary Lava Tubes. Kalita H; Thangavelautham J Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577410 [TBL] [Abstract][Full Text] [Related]
10. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain. Sakayori G; Ishigami G Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951 [TBL] [Abstract][Full Text] [Related]
11. Onboard centralized frame tree database for intelligent space operations of the Mars Science Laboratory Rover. Kim WS; Diaz-Calderon A; Peters SF; Carsten JL; Leger C IEEE Trans Cybern; 2014 Nov; 44(11):2109-21. PubMed ID: 25330473 [TBL] [Abstract][Full Text] [Related]
12. Training of a leaning agent for navigation--inspired by brain-machine interface. Kitamura T; Nishino D IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):353-65. PubMed ID: 16602595 [TBL] [Abstract][Full Text] [Related]
14. Development of a Lizard-Inspired Robot for Mars Surface Exploration. Chen G; Qiao L; Zhou Z; Richter L; Ji A Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810375 [TBL] [Abstract][Full Text] [Related]
15. AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Francis R; Estlin T; Doran G; Johnstone S; Gaines D; Verma V; Burl M; Frydenvang J; Montaño S; Wiens RC; Schaffer S; Gasnault O; DeFlores L; Blaney D; Bornstein B Sci Robot; 2017 Jun; 2(7):. PubMed ID: 33157897 [TBL] [Abstract][Full Text] [Related]
16. Semantic Terrain Segmentation in the Navigation Vision of Planetary Rovers-A Systematic Literature Review. Kuang B; Gu C; Rana ZA; Zhao Y; Sun S; Nnabuife SG Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366089 [No Abstract] [Full Text] [Related]
17. Chaotic dynamics of a behavior-based miniature mobile robot: effects of environment and control structure. Monirul Islam M; Murase K Neural Netw; 2005 Mar; 18(2):123-44. PubMed ID: 15795111 [TBL] [Abstract][Full Text] [Related]
18. Towards terrain interaction prediction for bioinspired planetary exploration rovers. Yeomans B; Saaj CM Bioinspir Biomim; 2014 Mar; 9(1):016009. PubMed ID: 24434658 [TBL] [Abstract][Full Text] [Related]