These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12662894)

  • 1. Self-organizing Internal Representation in Learning of Navigation: A Physical Experiment by the Mobile Robot YAMABICO.
    Fukumura N; Tani J
    Neural Netw; 1997 Jan; 10(1):153-159. PubMed ID: 12662894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based learning for mobile robot navigation from the dynamical systems perspective.
    Tani J
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):421-36. PubMed ID: 18263044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On learning navigation behaviors for small mobile robots with reservoir computing architectures.
    Antonelo EA; Schrauwen B
    IEEE Trans Neural Netw Learn Syst; 2015 Apr; 26(4):763-80. PubMed ID: 25794381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning.
    Arleo A; Smeraldi F; Gerstner W
    IEEE Trans Neural Netw; 2004 May; 15(3):639-52. PubMed ID: 15384552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning sensor-based navigation of a real mobile robot in unknown worlds.
    Araujo R; de Almeida AT
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(2):164-78. PubMed ID: 18252290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive internal state space construction method for reinforcement learning of a real-world agent.
    Samejima K; Omori T
    Neural Netw; 1999 Oct; 12(7-8):1143-1155. PubMed ID: 12662650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Tracking Control for Robots With an Interneural Computing Scheme.
    Tsai FS; Hsu SY; Shih MH
    IEEE Trans Neural Netw Learn Syst; 2018 Apr; 29(4):832-844. PubMed ID: 28129188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation in natural and artificial agents: an embodied cognitive science perspective.
    Pfeifer R; Scheier C
    Z Naturforsch C J Biosci; 1998; 53(7-8):480-503. PubMed ID: 9755508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems.
    Tani J; Nolfi S
    Neural Netw; 1999 Oct; 12(7-8):1131-1141. PubMed ID: 12662649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.
    Alnajjar F; Murase K
    Int J Neural Syst; 2006 Aug; 16(4):229-39. PubMed ID: 16972312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of homing navigation in a real mobile robot.
    Floreano D; Mondada F
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(3):396-407. PubMed ID: 18263042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Goal-Directed Navigation Through Combining Learning Based Global and Local Planners.
    Zhou X; Gao Y; Guan L
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision-Based Topological Mapping and Navigation With Self-Organizing Neural Networks.
    Hu Y; Subagdja B; Tan AH; Yin Q
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7101-7113. PubMed ID: 34138715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GPU-accelerated cortical neural network model for visually guided robot navigation.
    Beyeler M; Oros N; Dutt N; Krichmar JL
    Neural Netw; 2015 Dec; 72():75-87. PubMed ID: 26494281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Case study on a self-organizing spiking neural network for robot navigation.
    Nichols E; McDaid LJ; Siddique NH
    Int J Neural Syst; 2010 Dec; 20(6):501-8. PubMed ID: 21117272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors.
    Deng F; Zhu X; He C
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive navigation in dynamic environment using a multisensor predictor.
    Song KT; Chang CC
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(6):870-80. PubMed ID: 18252364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based robot navigation with task achievability.
    Ishihara Y; Takahashi M
    Front Robot AI; 2023; 10():944375. PubMed ID: 37323640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.