BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12662930)

  • 21. Structure-based kernels for the prediction of catalytic residues and their involvement in human inherited disease.
    Xin F; Myers S; Li YF; Cooper DN; Mooney SD; Radivojac P
    Bioinformatics; 2010 Aug; 26(16):1975-82. PubMed ID: 20551136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conservation of electrostatic properties within enzyme families and superfamilies.
    Livesay DR; Jambeck P; Rojnuckarin A; Subramaniam S
    Biochemistry; 2003 Apr; 42(12):3464-73. PubMed ID: 12653550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are protein-protein interfaces more conserved in sequence than the rest of the protein surface?
    Caffrey DR; Somaroo S; Hughes JD; Mintseris J; Huang ES
    Protein Sci; 2004 Jan; 13(1):190-202. PubMed ID: 14691234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.
    Amara AA; Rehm BH
    Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.
    Fang C; Noguchi T; Yamana H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1440003. PubMed ID: 25362840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction.
    Teppa E; Wilkins AD; Nielsen M; Buslje CM
    BMC Bioinformatics; 2012 Sep; 13():235. PubMed ID: 22978315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular and structural basis of drift in the functions of closely-related homologous enzyme domains: implications for function annotation based on homology searches and structural genomics.
    Roy A; Srinivasan N; Gowri VS
    In Silico Biol; 2009; 9(1-2):S41-55. PubMed ID: 19537164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Architecture of the catalytic HPN motif is conserved in all E2 conjugating enzymes.
    Cook BW; Shaw GS
    Biochem J; 2012 Jul; 445(2):167-74. PubMed ID: 22563859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. E1DS: catalytic site prediction based on 1D signatures of concurrent conservation.
    Chien TY; Chang DT; Chen CY; Weng YZ; Hsu CM
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W291-6. PubMed ID: 18524800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of functionally important residues based solely on the computed energetics of protein structure.
    Elcock AH
    J Mol Biol; 2001 Sep; 312(4):885-96. PubMed ID: 11575940
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustering of domains of functionally related enzymes in the interaction database PRECISE by the generation of primary sequence patterns.
    Landon MR; Lancia DR; Clodfelter KH; Vajda S
    J Mol Graph Model; 2006 May; 24(6):426-33. PubMed ID: 16221553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local frustration around enzyme active sites.
    Freiberger MI; Guzovsky AB; Wolynes PG; Parra RG; Ferreiro DU
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4037-4043. PubMed ID: 30765513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1).
    Xiao X; Hui MJ; Liu Z; Qiu WR
    J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR solution structure of hPar14 reveals similarity to the peptidyl prolyl cis/trans isomerase domain of the mitotic regulator hPin1 but indicates a different functionality of the protein.
    Sekerina E; Rahfeld JU; Müller J; Fanghänel J; Rascher C; Fischer G; Bayer P
    J Mol Biol; 2000 Aug; 301(4):1003-17. PubMed ID: 10966801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily.
    Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN
    Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.