These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 12662930)

  • 41. How protein stability and new functions trade off.
    Tokuriki N; Stricher F; Serrano L; Tawfik DS
    PLoS Comput Biol; 2008 Feb; 4(2):e1000002. PubMed ID: 18463696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Locating the active sites of enzymes using mechanical properties.
    Sacquin-Mora S; Laforet E; Lavery R
    Proteins; 2007 May; 67(2):350-9. PubMed ID: 17311346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequence conservation in families whose members have little or no sequence similarity: the four-helical cytokines and cytochromes.
    Hill EE; Morea V; Chothia C
    J Mol Biol; 2002 Sep; 322(1):205-33. PubMed ID: 12215425
    [TBL] [Abstract][Full Text] [Related]  

  • 45. firestar--prediction of functionally important residues using structural templates and alignment reliability.
    López G; Valencia A; Tress ML
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W573-7. PubMed ID: 17584799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions.
    Nagano N; Orengo CA; Thornton JM
    J Mol Biol; 2002 Aug; 321(5):741-65. PubMed ID: 12206759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequence analysis and structure prediction of enoyl-CoA hydratase from Avicennia marina: implication of various amino acid residues on substrate-enzyme interactions.
    Jabeen U; Salim A
    Phytochemistry; 2013 Oct; 94():36-44. PubMed ID: 23809632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural bases of stability-function tradeoffs in enzymes.
    Beadle BM; Shoichet BK
    J Mol Biol; 2002 Aug; 321(2):285-96. PubMed ID: 12144785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The evolutionary origins and catalytic importance of conserved electrostatic networks within TIM-barrel proteins.
    Livesay DR; La D
    Protein Sci; 2005 May; 14(5):1158-70. PubMed ID: 15840824
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Residues Distal to the Active Site Contribute to Enhanced Catalytic Activity of Variant and Hybrid β-Lactamases Derived from CTX-M-14 and CTX-M-15.
    He D; Chiou J; Zeng Z; Liu L; Chen X; Zeng L; Chan EW; Liu JH; Chen S
    Antimicrob Agents Chemother; 2015 Oct; 59(10):5976-83. PubMed ID: 26169409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure and proposed mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae.
    Elkhal CK; Kean KM; Parsonage D; Maenpuen S; Chaiyen P; Claiborne A; Karplus PA
    FEBS J; 2015 Aug; 282(16):3030-42. PubMed ID: 25688572
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzymatic characterization and molecular modeling of an evolutionarily interesting fungal β-N-acetylhexosaminidase.
    Ryšlavá H; Kalendová A; Doubnerová V; Skočdopol P; Kumar V; Kukačka Z; Pompach P; Vaněk O; Slámová K; Bojarová P; Kulik N; Ettrich R; Křen V; Bezouška K
    FEBS J; 2011 Jul; 278(14):2469-84. PubMed ID: 21564548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of detailed enzyme functions and identification of specificity determining residues by random forests.
    Nagao C; Nagano N; Mizuguchi K
    PLoS One; 2014; 9(1):e84623. PubMed ID: 24416252
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Setting the stage for new catalytic functions in designed proteins--exploring the imine pathway in the efficient decarboxylation of oxaloacetate by an Arg-Lys site in a four-helix bundle protein scaffold.
    Allert M; Baltzer L
    Chemistry; 2002 Jun; 8(11):2549-60. PubMed ID: 12180334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae.
    McGuire AT; Keates RA; Cook S; Mangroo D
    Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The M1 family of vertebrate aminopeptidases: role of evolutionarily conserved tyrosines in the enzymatic mechanism of aminopeptidase B.
    Cadel S; Darmon C; Pernier J; Hervé G; Foulon T
    Biochimie; 2015 Feb; 109():67-77. PubMed ID: 25530263
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequence and structure-based prediction of fructosyltransferase activity for functional subclassification of fungal GH32 enzymes.
    Trollope KM; van Wyk N; Kotjomela MA; Volschenk H
    FEBS J; 2015 Dec; 282(24):4782-96. PubMed ID: 26426731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.