BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12663206)

  • 1. Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland.
    Fitzgerald EJ; Caffrey JM; Nesaratnam ST; McLoughlin P
    Environ Pollut; 2003; 123(1):67-74. PubMed ID: 12663206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima.
    Reboreda R; Caçador I
    Chemosphere; 2007 Nov; 69(10):1655-61. PubMed ID: 17599388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survey of zinc, copper and cadmium concentrations in salt marsh plants along the Dutch coast.
    Otte ML; Bestebroer SJ; van der Linden JM; Rozema J; Broekman RA
    Environ Pollut; 1991; 72(3):175-89. PubMed ID: 15092100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root-induced cycling of lead in salt marsh sediments.
    Sundby B; Caetano M; Vale C; Gobeil C; George LW; Nuzzio DB
    Environ Sci Technol; 2005 Apr; 39(7):2080-6. PubMed ID: 15871240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk)Vierh: biological indication potential.
    MacFarlane GR; Pulkownik A; Burchett MD
    Environ Pollut; 2003; 123(1):139-51. PubMed ID: 12663214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of lead and copper in Rhizophora apiculata from Setiu mangrove forest, Terengganu, Malaysia.
    Kamaruzzaman BY; Ong MC; Jalal KC; Shahbudin S; Nor OM
    J Environ Biol; 2009 Sep; 30(5 Suppl):821-4. PubMed ID: 20143712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal).
    Santos-Echeandía J; Vale C; Caetano M; Pereira P; Prego R
    Mar Environ Res; 2010 Dec; 70(5):358-67. PubMed ID: 20727578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility of Pb in salt marshes recorded by total content and stable isotopic signature.
    Caetano M; Fonseca N; Cesário Carlos Vale R
    Sci Total Environ; 2007 Jul; 380(1-3):84-92. PubMed ID: 17320933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China.
    Deng H; Ye ZH; Wong MH
    Environ Pollut; 2004 Nov; 132(1):29-40. PubMed ID: 15276271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina).
    Marinho CH; Giarratano E; Esteves JL; Narvarte MA; Gil MN
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6724-6735. PubMed ID: 28091989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth Responses and Accumulation Characteristics of Three Ornamentals Under Copper and Lead Contamination in a Hydroponic-Culture Experiment.
    Shao Z; Lu W; Nasar J; Zhang J; Yan L
    Bull Environ Contam Toxicol; 2019 Dec; 103(6):854-859. PubMed ID: 31595321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the combined addition of Zn and Pb on partitioning in sediments and their accumulation by the emergent macrophyte Schoenoplectus californicus.
    Arreghini S; de Cabo L; Serafini R; de Iorio AF
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8098-8107. PubMed ID: 28144860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.
    Andreotti F; Mucha AP; Caetano C; Rodrigues P; Rocha Gomes C; Almeida CM
    Ecotoxicol Environ Saf; 2015 Oct; 120():303-9. PubMed ID: 26094036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China.
    Sun Z; Li J; He T; Ren P; Zhu H; Gao H; Tian L; Hu X
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23080-23095. PubMed ID: 28825222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can PAHs influence Cu accumulation by salt marsh plants?
    Almeida CM; Mucha AP; Delgado MF; Caçador MI; Bordalo AA; Vasconcelos MT
    Mar Environ Res; 2008 Sep; 66(3):311-8. PubMed ID: 18539325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial.
    King RF; Royle A; Putwain PD; Dickinson NM
    Environ Pollut; 2006 Sep; 143(2):318-26. PubMed ID: 16427727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.