These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 12663658)
1. Autocatalytic oscillations in the early phase of the photoreduced methyl viologen-initiated fast kinetic reaction of hydrogenase. Bagyinka C; Osz J; Száaraz S J Biol Chem; 2003 Jun; 278(23):20624-7. PubMed ID: 12663658 [TBL] [Abstract][Full Text] [Related]
2. An autocatalytic step in the reaction cycle of hydrogenase from Thiocapsa roseopersicina can explain the special characteristics of the enzyme reaction. Osz J; Bagyinka C Biophys J; 2005 Sep; 89(3):1984-9. PubMed ID: 15951385 [TBL] [Abstract][Full Text] [Related]
3. The autocatalytic step is an integral part of the hydrogenase cycle. Bankó S; Kucsma Z; Lente G; Bagyinka C Biochim Biophys Acta; 2013 Mar; 1834(3):658-64. PubMed ID: 23313094 [TBL] [Abstract][Full Text] [Related]
4. Concentration-dependent front velocity of the autocatalytic hydrogenase reaction. Bodó G; Branca RM; Tóth A; Horváth D; Bagyinka C Biophys J; 2009 Jun; 96(12):4976-83. PubMed ID: 19527657 [TBL] [Abstract][Full Text] [Related]
5. Interaction of HydSL hydrogenase from the purple sulfur bacterium Thiocapsa roseopersicina BBS with methyl viologen and positively charged polypeptides. Abdullatypov AV; Zorin NA; Tsygankov AA Biochemistry (Mosc); 2014 Aug; 79(8):805-11. PubMed ID: 25365490 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. Tatsumi H; Takagi K; Fujita M; Kano K; Ikeda T Anal Chem; 1999 May; 71(9):1753-9. PubMed ID: 10330906 [TBL] [Abstract][Full Text] [Related]
7. Theoretical calculations on hydrogenase kinetics: explanation of the lag phase and the enzyme concentration dependence of the activity of hydrogenase uptake. Osz J; Bodó G; Branca RM; Bagyinka C Biophys J; 2005 Sep; 89(3):1957-64. PubMed ID: 15951384 [TBL] [Abstract][Full Text] [Related]
8. Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. Morozov SV; Karyakina EE; Zorin NA; Varfolomeyev SD; Cosnier S; Karyakin AA Bioelectrochemistry; 2002 Jan; 55(1-2):169-71. PubMed ID: 11786367 [TBL] [Abstract][Full Text] [Related]
10. The role of Hox hydrogenase in the H2 metabolism of Thiocapsa roseopersicina. Rákhely G; Laurinavichene TV; Tsygankov AA; Kovács KL Biochim Biophys Acta; 2007 Jun; 1767(6):671-6. PubMed ID: 17376400 [TBL] [Abstract][Full Text] [Related]
11. Transformation of metals and metal ions by hydrogenases from phototrophic bacteria. Zadvorny OA; Zorin NA; Gogotov IN Arch Microbiol; 2006 Jan; 184(5):279-85. PubMed ID: 16283252 [TBL] [Abstract][Full Text] [Related]
12. Influence of metal ions on hydrogenase from the purple sulfur bacterium Thiocapsa roseopersicina. Zadvorny OA; Zorin NA; Gogotov IN Biochemistry (Mosc); 2000 Nov; 65(11):1287-91. PubMed ID: 11112845 [TBL] [Abstract][Full Text] [Related]
13. Electron transfer between the hydrogenase from Desulfovibrio vulgaris (Hildenborough) and viologens. 1. Investigations by cyclic voltammetry. Hoogvliet JC; Lievense LC; van Dijk C; Veeger C Eur J Biochem; 1988 Jun; 174(2):273-80. PubMed ID: 3289919 [TBL] [Abstract][Full Text] [Related]
14. A second soluble Hox-type NiFe enzyme completes the hydrogenase set in Thiocapsa roseopersicina BBS. Maróti J; Farkas A; Nagy IK; Maróti G; Kondorosi E; Rákhely G; Kovács KL Appl Environ Microbiol; 2010 Aug; 76(15):5113-23. PubMed ID: 20543059 [TBL] [Abstract][Full Text] [Related]
15. Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. Greene BL; Joseph CA; Maroney MJ; Dyer RB J Am Chem Soc; 2012 Jul; 134(27):11108-11. PubMed ID: 22716776 [TBL] [Abstract][Full Text] [Related]
16. HupO, a Novel Regulator Involved in Thiosulfate-Responsive Control of HupSL [NiFe]-Hydrogenase Synthesis in Thiocapsa roseopersicina. Nagy IK; Kovács KL; Rákhely G; Maróti G Appl Environ Microbiol; 2016 Jan; 82(7):2039-2049. PubMed ID: 26801573 [TBL] [Abstract][Full Text] [Related]
17. Cyanobacterial-type, heteropentameric, NAD+-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Rákhely G; Kovács AT; Maróti G; Fodor BD; Csanádi G; Latinovics D; Kovács KL Appl Environ Microbiol; 2004 Feb; 70(2):722-8. PubMed ID: 14766547 [TBL] [Abstract][Full Text] [Related]
18. Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS. Palágyi-Mészáros LS; Maróti J; Latinovics D; Balogh T; Klement E; Medzihradszky KF; Rákhely G; Kovács KL FEBS J; 2009 Jan; 276(1):164-74. PubMed ID: 19019079 [TBL] [Abstract][Full Text] [Related]
19. Photo-induced H2 production by [NiFe]-hydrogenase from T. roseopersicina covalently linked to a Ru(II) photosensitizer. Zadvornyy OA; Lucon JE; Gerlach R; Zorin NA; Douglas T; Elgren TE; Peters JW J Inorg Biochem; 2012 Jan; 106(1):151-5. PubMed ID: 22119807 [TBL] [Abstract][Full Text] [Related]
20. The effect of sulfur compounds on H2 evolution/consumption reactions, mediated by various hydrogenases, in the purple sulfur bacterium, Thiocapsa roseopersicina. Laurinavichene TV; Rákhely G; Kovács KL; Tsygankov AA Arch Microbiol; 2007 Oct; 188(4):403-10. PubMed ID: 17546443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]