BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12663673)

  • 1. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation.
    Drisaldi B; Stewart RS; Adles C; Stewart LR; Quaglio E; Biasini E; Fioriti L; Chiesa R; Harris DA
    J Biol Chem; 2003 Jun; 278(24):21732-43. PubMed ID: 12663673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic prion protein (PrP) is not toxic in N2a cells and primary neurons expressing pathogenic PrP mutations.
    Fioriti L; Dossena S; Stewart LR; Stewart RS; Harris DA; Forloni G; Chiesa R
    J Biol Chem; 2005 Mar; 280(12):11320-8. PubMed ID: 15632159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic Reticulum.
    Stewart RS; Drisaldi B; Harris DA
    Mol Biol Cell; 2001 Apr; 12(4):881-9. PubMed ID: 11294893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteasomes and ubiquitin are involved in the turnover of the wild-type prion protein.
    Yedidia Y; Horonchik L; Tzaban S; Yanai A; Taraboulos A
    EMBO J; 2001 Oct; 20(19):5383-91. PubMed ID: 11574470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of mutant or cytosolic PrP in transgenic mice and cells is not associated with endoplasmic reticulum stress or proteasome dysfunction.
    Quaglio E; Restelli E; Garofoli A; Dossena S; De Luigi A; Tagliavacca L; Imperiale D; Migheli A; Salmona M; Sitia R; Forloni G; Chiesa R
    PLoS One; 2011 Apr; 6(4):e19339. PubMed ID: 21559407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein.
    Zanusso G; Petersen RB; Jin T; Jing Y; Kanoush R; Ferrari S; Gambetti P; Singh N
    J Biol Chem; 1999 Aug; 274(33):23396-404. PubMed ID: 10438517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggresome formation by mutant prion proteins: the unfolding role of proteasomes in familial prion disorders.
    Mishra RS; Bose S; Gu Y; Li R; Singh N
    J Alzheimers Dis; 2003 Feb; 5(1):15-23. PubMed ID: 12590162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The chaperone protein BiP binds to a mutant prion protein and mediates its degradation by the proteasome.
    Jin T; Gu Y; Zanusso G; Sy M; Kumar A; Cohen M; Gambetti P; Singh N
    J Biol Chem; 2000 Dec; 275(49):38699-704. PubMed ID: 10970892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel quality control compartment derived from the endoplasmic reticulum.
    Kamhi-Nesher S; Shenkman M; Tolchinsky S; Fromm SV; Ehrlich R; Lederkremer GZ
    Mol Biol Cell; 2001 Jun; 12(6):1711-23. PubMed ID: 11408579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The proteasome participates in degradation of mutant alpha 1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes.
    Teckman JH; Burrows J; Hidvegi T; Schmidt B; Hale PD; Perlmutter DH
    J Biol Chem; 2001 Nov; 276(48):44865-72. PubMed ID: 11577074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation.
    Ashok A; Hegde RS
    Mol Biol Cell; 2008 Aug; 19(8):3463-76. PubMed ID: 18508914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ
    J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Familial prion protein mutants inhibit Hrd1-mediated retrotranslocation of misfolded proteins by depleting misfolded protein sensor BiP.
    Peters SL; Déry MA; LeBlanc AC
    Hum Mol Genet; 2016 Mar; 25(5):976-88. PubMed ID: 26740554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome.
    Hughes EA; Hammond C; Cresswell P
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1896-901. PubMed ID: 9050876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of wild-type vasopressin precursor and pathogenic mutants by the proteasome.
    Friberg MA; Spiess M; Rutishauser J
    J Biol Chem; 2004 May; 279(19):19441-7. PubMed ID: 14996841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The C-terminal globular domain of the prion protein is necessary and sufficient for import into the endoplasmic reticulum.
    Heske J; Heller U; Winklhofer KF; Tatzelt J
    J Biol Chem; 2004 Feb; 279(7):5435-43. PubMed ID: 14645231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Scrapie, proteasome and endoplasmic reticulum].
    Béranger F; Mangé A; Lehmann S
    Med Sci (Paris); 2003; 19(8-9):778-80. PubMed ID: 14593603
    [No Abstract]   [Full Text] [Related]  

  • 18. Selective processing and metabolism of disease-causing mutant prion proteins.
    Ashok A; Hegde RS
    PLoS Pathog; 2009 Jun; 5(6):e1000479. PubMed ID: 19543376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient glycosylation site utilization by intracellular apolipoprotein B. Implications for proteasomal degradation.
    Huang XF; Shelness GS
    J Lipid Res; 1999 Dec; 40(12):2212-22. PubMed ID: 10588947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation.
    Ma J; Lindquist S
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):14955-60. PubMed ID: 11742063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.