BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 12663926)

  • 1. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase.
    Zhang H; Yang Z; Shen Y; Tong L
    Science; 2003 Mar; 299(5615):2064-7. PubMed ID: 12663926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop.
    Zhang H; Tweel B; Tong L
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5910-5. PubMed ID: 15079078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in complex with CP-640186.
    Zhang H; Tweel B; Li J; Tong L
    Structure; 2004 Sep; 12(9):1683-91. PubMed ID: 15341732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.
    Wei J; Tong L
    Nature; 2015 Oct; 526(7575):723-7. PubMed ID: 26458104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim.
    Xiang S; Callaghan MM; Watson KG; Tong L
    Proc Natl Acad Sci U S A; 2009 Dec; 106(49):20723-7. PubMed ID: 19926852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotinoyl domain of human acetyl-CoA carboxylase: Structural insights into the carboxyl transfer mechanism.
    Lee CK; Cheong HK; Ryu KS; Lee JI; Lee W; Jeon YH; Cheong C
    Proteins; 2008 Aug; 72(2):613-24. PubMed ID: 18247344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden.
    Yu LP; Kim YS; Tong L
    Proc Natl Acad Sci U S A; 2010 Dec; 107(51):22072-7. PubMed ID: 21135213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the biotinyl domain of acetyl-coenzyme A carboxylase determined by MAD phasing.
    Athappilly FK; Hendrickson WA
    Structure; 1995 Dec; 3(12):1407-19. PubMed ID: 8747466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-guided inhibitor design for human acetyl-coenzyme A carboxylase by interspecies active site conversion.
    Rajamohan F; Marr E; Reyes AR; Landro JA; Anderson MD; Corbett JW; Dirico KJ; Harwood JH; Tu M; Vajdos FF
    J Biol Chem; 2011 Dec; 286(48):41510-41519. PubMed ID: 21953464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical genetics of acetyl-CoA carboxylases.
    Zu X; Zhong J; Luo D; Tan J; Zhang Q; Wu Y; Liu J; Cao R; Wen G; Cao D
    Molecules; 2013 Jan; 18(2):1704-19. PubMed ID: 23358327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product.
    Shen Y; Volrath SL; Weatherly SC; Elich TD; Tong L
    Mol Cell; 2004 Dec; 16(6):881-91. PubMed ID: 15610732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetyl-coenzyme A carboxylases: versatile targets for drug discovery.
    Tong L; Harwood HJ
    J Cell Biochem; 2006 Dec; 99(6):1476-88. PubMed ID: 16983687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK.
    Cho YS; Lee JI; Shin D; Kim HT; Jung HY; Lee TG; Kang LW; Ahn YJ; Cho HS; Heo YS
    Biochem Biophys Res Commun; 2010 Jan; 391(1):187-92. PubMed ID: 19900410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamic organization of fungal acetyl-CoA carboxylase.
    Hunkeler M; Stuttfeld E; Hagmann A; Imseng S; Maier T
    Nat Commun; 2016 Apr; 7():11196. PubMed ID: 27073141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, activity, and inhibition of the Carboxyltransferase β-subunit of acetyl coenzyme A carboxylase (AccD6) from Mycobacterium tuberculosis.
    Reddy MC; Breda A; Bruning JB; Sherekar M; Valluru S; Thurman C; Ehrenfeld H; Sacchettini JC
    Antimicrob Agents Chemother; 2014 Oct; 58(10):6122-32. PubMed ID: 25092705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An isoleucine/leucine residue in the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors.
    Zagnitko O; Jelenska J; Tevzadze G; Haselkorn R; Gornicki P
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6617-22. PubMed ID: 11381131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the alpha(6)beta(6) holoenzyme of propionyl-coenzyme A carboxylase.
    Huang CS; Sadre-Bazzaz K; Shen Y; Deng B; Zhou ZH; Tong L
    Nature; 2010 Aug; 466(7309):1001-5. PubMed ID: 20725044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and characterization of recombinant fungal acetyl-CoA carboxylase and isolation of a soraphen-binding domain.
    Weatherly SC; Volrath SL; Elich TD
    Biochem J; 2004 May; 380(Pt 1):105-10. PubMed ID: 14766011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cyclic keto-enol insecticide spirotetramat inhibits insect and spider mite acetyl-CoA carboxylases by interfering with the carboxyltransferase partial reaction.
    Lümmen P; Khajehali J; Luther K; Van Leeuwen T
    Insect Biochem Mol Biol; 2014 Dec; 55():1-8. PubMed ID: 25281882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.