BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12664138)

  • 1. Microbial silica deposition in geothermal hot waters.
    Inagaki F; Motomura Y; Ogata S
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):605-11. PubMed ID: 12664138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-situ grown silica sinters in Icelandic geothermal areas.
    Tobler DJ; Stefánsson A; Benning LG
    Geobiology; 2008 Dec; 6(5):481-502. PubMed ID: 19076639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid biomolecules in silica sinters: indicators of microbial biodiversity.
    Pancost RD; Pressley S; Coleman JM; Benning LG; Mountain BW
    Environ Microbiol; 2005 Jan; 7(1):66-77. PubMed ID: 15643937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile.
    Gong J; Myers KD; Munoz-Saez C; Homann M; Rouillard J; Wirth R; Schreiber A; van Zuilen MA
    Astrobiology; 2020 Apr; 20(4):500-524. PubMed ID: 31663774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record.
    Campbell KA; Lynne BY; Handley KM; Jordan S; Farmer JD; Guido DM; Foucher F; Turner S; Perry RS
    Astrobiology; 2015 Oct; 15(10):858-82. PubMed ID: 26496526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermus thermophilus TMY isolated from silica scale taken from a geothermal power plant.
    Fujino Y; Kawatsu R; Inagaki F; Umeda A; Yokoyama T; Okaue Y; Iwai S; Ogata S; Ohshima T; Doi K
    J Appl Microbiol; 2008 Jan; 104(1):70-8. PubMed ID: 17850299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.
    Berelson WM; Corsetti FA; Pepe-Ranney C; Hammond DE; Beaumont W; Spear JR
    Geobiology; 2011 Sep; 9(5):411-24. PubMed ID: 21777367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-deposition of Amorphous Silica by an Extremely Thermophilic Bacterium, Thermus spp.
    Inagaki F; Yokoyama T; Doi K; Izawa E; Ogata S
    Biosci Biotechnol Biochem; 1998; 62(6):1271-2. PubMed ID: 27388653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica deposition and phenotypic changes to Thermus thermophilus cultivated in the presence of supersaturated silicia.
    Iwai S; Doi K; Fujino Y; Nakazono T; Fukuda K; Motomura Y; Ogata S
    ISME J; 2010 Jun; 4(6):809-16. PubMed ID: 20220788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early colonization of thermal niches in a silica-depositing hot spring in central Tibet.
    Lau CY; Aitchison JC; Pointing SB
    Geobiology; 2008 Mar; 6(2):136-46. PubMed ID: 18380876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial diversity in five Icelandic geothermal waters: temperature and sinter growth rate effects.
    Tobler DJ; Benning LG
    Extremophiles; 2011 Jul; 15(4):473-85. PubMed ID: 21607550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithofacies and biofacies of mid-Paleozoic thermal spring deposits in the Drummond Basin, Queensland, Australia.
    Walter MR; Desmarais D; Farmer JD; Hinman NW
    Palaios; 1996; 11():497-518. PubMed ID: 11541250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment.
    Walker JJ; Spear JR; Pace NR
    Nature; 2005 Apr; 434(7036):1011-4. PubMed ID: 15846344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of expression of a silica-induced protein (Sip) in Thermus thermophilus by supersaturated silicic acid.
    Doi K; Fujino Y; Inagaki F; Kawatsu R; Tahara M; Ohshima T; Okaue Y; Yokoyama T; Iwai S; Ogata S
    Appl Environ Microbiol; 2009 Apr; 75(8):2406-13. PubMed ID: 19233950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic Silica Conglomerate with an Extremophile Microbial Matrix in a Hot-Water Stream Paleoenvironment.
    Guido DM; Campbell KA
    Astrobiology; 2019 Dec; 19(12):1433-1441. PubMed ID: 31059288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community biofabrics in a geothermal mine adit.
    Spear JR; Barton HA; Robertson CE; Francis CA; Pace NR
    Appl Environ Microbiol; 2007 Oct; 73(19):6172-80. PubMed ID: 17693567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The phylogenetic diversity of Thermus and Meiothermus from microbial mats of an Australian subsurface aquifer runoff channel.
    Spanevello MD; Patel BK
    FEMS Microbiol Ecol; 2004 Oct; 50(1):63-73. PubMed ID: 19712377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthetic microbial mats in the 3,416-Myr-old ocean.
    Tice MM; Lowe DR
    Nature; 2004 Sep; 431(7008):549-52. PubMed ID: 15457255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.
    Hamamura N; Macur RE; Korf S; Ackerman G; Taylor WP; Kozubal M; Reysenbach AL; Inskeep WP
    Environ Microbiol; 2009 Feb; 11(2):421-31. PubMed ID: 19196273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Thermophilic microbial metal reduction].
    Slobodkin AI
    Mikrobiologiia; 2005; 74(5):581-95. PubMed ID: 16315976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.