These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 12664150)

  • 1. Laccase-catalysed synthesis of coupling products of phenolic substrates in different reactors.
    Pilz R; Hammer E; Schauer F; Kragl U
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):708-12. PubMed ID: 12664150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase.
    Vandertol-Vanier HA; Vazquez-Duhalt R; Tinoco R; Pickard MA
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):214-20. PubMed ID: 12407453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laccase-induced C-N coupling of substituted p-hydroquinones with p-aminobenzoic acid in comparison with known chemical routes.
    Mikolasch A; Matthies A; Lalk M; Schauer F
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):389-97. PubMed ID: 18668239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Bioeng; 2005 Jul; 91(1):114-23. PubMed ID: 15889399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccase-catalysed oxidation of ferulic acid and ethyl ferulate in aqueous medium: a green procedure for the synthesis of new compounds.
    Aljawish A; Chevalot I; Jasniewski J; Paris C; Scher J; Muniglia L
    Food Chem; 2014 Feb; 145():1046-54. PubMed ID: 24128582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor.
    Thiruchelvam AT; Ramsay JA
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):547-54. PubMed ID: 17216467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advantages of continuous over batch reactors for the kinetic analysis of enzymes inhibited by an unknown substrate impurity.
    Gallifuoco A; Alfani F; Cantarella M
    Biotechnol Bioeng; 2002 Sep; 79(6):641-6. PubMed ID: 12209811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Prog; 2009; 25(3):763-73. PubMed ID: 19496113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials.
    Mikolasch A; Schauer F
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):605-24. PubMed ID: 19183983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Immunoenzyme analysis based on laccase conjugates with fluorometric detection of the enzymatic reaction product].
    Dzhafarova AN; Skorobogat'ko OV; Stepanova EV; Iaropolov AI
    Prikl Biokhim Mikrobiol; 1995; 31(1):128-33. PubMed ID: 7740022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New process for fungal delignification of sugar-cane bagasse and simultaneous production of laccase in a vapor phase bioreactor.
    Meza JC; Sigoillot JC; Lomascolo A; Navarro D; Auria R
    J Agric Food Chem; 2006 May; 54(11):3852-8. PubMed ID: 16719506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccase production at reactor scale by filamentous fungi.
    Couto SR; Toca-Herrera JL
    Biotechnol Adv; 2007; 25(6):558-69. PubMed ID: 17706395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cysteinyl caffeic acid, caffeic acid, and L-dopa on the oxidative cross-linking of feruloylated arabinoxylans by a fungal laccase.
    Figueroa-Espinoza MC; Rouau X
    J Agric Food Chem; 1999 Feb; 47(2):497-503. PubMed ID: 10563923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-oxygen bond formation by fungal laccases: cross-coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols.
    Manda K; Gördes D; Mikolasch A; Hammer E; Schmidt E; Thurow K; Schauer F
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):407-16. PubMed ID: 17576553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of (R)-4-hydroxymandelonitrile synthesis in an aqueous-organic biphasic stirred tank batch reactor.
    Willeman WF; Neuhofer R; Wirth I; Pöchlauer P; Straathof AJ; Heijnen JJ
    Biotechnol Bioeng; 2002 Jul; 79(2):154-64. PubMed ID: 12115431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative kinetic behavior of nitrifiers with different growth environments.
    Jih CG; Huang JS; Lin HJ; Chou HH
    Bioresour Technol; 2008 Jun; 99(9):3484-90. PubMed ID: 17826987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of laccase from basidiomycete Fomitella fraxinea.
    Park KM; Park SS
    J Microbiol Biotechnol; 2008 Apr; 18(4):670-5. PubMed ID: 18467859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors.
    Khiyami MA; Pometto AL; Kennedy WJ
    J Agric Food Chem; 2006 Mar; 54(5):1693-8. PubMed ID: 16506821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laccase-membrane reactors for decolorization of an acid azo dye in aqueous phase: process optimization.
    Katuri KP; Venkata Mohan S; Sridhar S; Pati BR; Sarma PN
    Water Res; 2009 Aug; 43(15):3647-58. PubMed ID: 19540548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.