BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 12664157)

  • 21. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant.
    Joe SJ; Suto K; Inoie C; Chida T
    J Biosci Bioeng; 2007 Aug; 104(2):117-23. PubMed ID: 17884656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one.
    Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1121-7. PubMed ID: 17187444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments.
    Hegler F; Posth NR; Jiang J; Kappler A
    FEMS Microbiol Ecol; 2008 Nov; 66(2):250-60. PubMed ID: 18811650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Biohydrometallurgical technology of a complex copper concentrate process].
    Murav'ev MI; Fomchenko NV; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2011; 47(6):663-71. PubMed ID: 22288195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.
    Blodau C
    Sci Total Environ; 2006 Oct; 369(1-3):307-32. PubMed ID: 16806405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample.
    Marhual NP; Pradhan N; Kar RN; Sukla LB; Mishra BK
    Bioresour Technol; 2008 Nov; 99(17):8331-6. PubMed ID: 18434140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deferribacter autotrophicus sp. nov., an iron(III)-reducing bacterium from a deep-sea hydrothermal vent.
    Slobodkina GB; Kolganova TV; Chernyh NA; Querellou J; Bonch-Osmolovskaya EA; Slobodkin AI
    Int J Syst Evol Microbiol; 2009 Jun; 59(Pt 6):1508-12. PubMed ID: 19502344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation and identification of iron-oxidizing acidophilic bacteria using cultivation techniques and amplified ribosomal DNA restriction enzyme analysis.
    Johnson DB; Okibe N; Hallberg KB
    J Microbiol Methods; 2005 Mar; 60(3):299-313. PubMed ID: 15649532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Genotypic and phenotypic polymorphism of environmental strains of the moderately thermophilic bacterium Sulfobacillus sibiricus].
    Tsaplina IA; Bogdanova TI; Kondrat'eva TF; Melamud VS; Lysenko AM; Karavaĭko GI
    Mikrobiologiia; 2008; 77(2):178-87. PubMed ID: 18522318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Microbial desulfuration of coal. I. Isolation and identification of iron- and sulfur-oxidizing bacteria].
    Ruiz-Alares MC; Iñigo B; Gómez-Arandas ; Gavilán JM
    Microbiol Esp; 1979-1980; 32-33():65-74. PubMed ID: 400534
    [No Abstract]   [Full Text] [Related]  

  • 31. Iron demand by thermophilic and mesophilic bacteria isolated from an antarctic geothermal soil.
    Pepi M; Agnorelli C; Bargagli R
    Biometals; 2005 Oct; 18(5):529-36. PubMed ID: 16333753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring.
    He ZG; Zhong H; Li Y
    Curr Microbiol; 2004 Feb; 48(2):159-63. PubMed ID: 15057486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors.
    Jones RM; Johnson DB
    Environ Sci Technol; 2016 Aug; 50(15):8239-45. PubMed ID: 27377871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Leptospirillum-like bacteria and their role in pyrite oxidation].
    Vardanian NS; Akopian VP
    Mikrobiologiia; 2003; 72(4):493-7. PubMed ID: 14526539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biologically Fe2+ oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle during heap bioleaching: an artificial neural network-based model.
    Ozkaya B; Sahinkaya E; Nurmi P; Kaksonen AH; Puhakka JA
    Bioprocess Biosyst Eng; 2008 Feb; 31(2):111-7. PubMed ID: 17712572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.
    Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Isolation and characterization of Acidiphilium strain teng-A and its metabolism of fe (III) during pure- and mixed cultivation].
    Liu YY; Chen ZW; Jiang CY; Liu SJ
    Wei Sheng Wu Xue Bao; 2007 Apr; 47(2):350-4. PubMed ID: 17552248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant.
    Romero J; Yañez C; Vásquez M; Moore ER; Espejo RT
    Res Microbiol; 2003 Jun; 154(5):353-9. PubMed ID: 12837511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor.
    Nevatalo LM; Mäkinen AE; Kaksonen AH; Puhakka JA
    Bioresour Technol; 2010 Jan; 101(1):276-84. PubMed ID: 19716290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.