These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 12664184)
21. Assessment of treatment alternatives for laboratory cod wastewater: a practical comparison with emphasis on cost and performance. Leong ST; Muttamara S; Laortanakul P; Lin HT Environ Monit Assess; 2002 Feb; 74(1):11-25. PubMed ID: 11893158 [TBL] [Abstract][Full Text] [Related]
22. Treatment of chrome plating wastewater (Cr+6) using activated alumina. Sarkar S; Gupta A Indian J Environ Health; 2003 Jan; 45(1):73-82. PubMed ID: 14723286 [TBL] [Abstract][Full Text] [Related]
23. Preparation and characterization of iron oxide nanoparticles coated with chitosan for removal of Cd(II) and Cr(VI) from aqueous solution. Shalaby TI; Fikrt NM; Mohamed MM; El Kady MF Water Sci Technol; 2014; 70(6):1004-10. PubMed ID: 25259488 [TBL] [Abstract][Full Text] [Related]
24. Removal of free and complexed heavy-metal ions by sorbents produced from fly (Musca domestica) larva shells. Gyliene O; Rekertas R; Salkauskas M Water Res; 2002 Sep; 36(16):4128-36. PubMed ID: 12405421 [TBL] [Abstract][Full Text] [Related]
25. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. Naiya TK; Bhattacharya AK; Das SK J Colloid Interface Sci; 2009 May; 333(1):14-26. PubMed ID: 19211112 [TBL] [Abstract][Full Text] [Related]
26. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Kobya M; Demirbas E; Senturk E; Ince M Bioresour Technol; 2005 Sep; 96(13):1518-21. PubMed ID: 15939281 [TBL] [Abstract][Full Text] [Related]
27. Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal. Sargın İ; Kaya M; Arslan G; Baran T; Ceter T Bioresour Technol; 2015 Feb; 177():1-7. PubMed ID: 25479387 [TBL] [Abstract][Full Text] [Related]
28. Chitin nanofibrils for rapid and efficient removal of metal ions from water system. Liu D; Zhu Y; Li Z; Tian D; Chen L; Chen P Carbohydr Polym; 2013 Oct; 98(1):483-9. PubMed ID: 23987372 [TBL] [Abstract][Full Text] [Related]
29. Chromium removal with cross-linked chitosan adsorption and base-precipitation combination. Zhang H; Wang F; Jin X; Zhu Y; Li X; Zhou H Water Sci Technol; 2013; 67(12):2768-75. PubMed ID: 23787316 [TBL] [Abstract][Full Text] [Related]
30. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution. Shi T; Jia S; Chen Y; Wen Y; Du C; Guo H; Wang Z J Hazard Mater; 2009 Sep; 169(1-3):838-46. PubMed ID: 19427115 [TBL] [Abstract][Full Text] [Related]
31. Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Prakash N; Sudha PN; Renganathan NG Environ Sci Pollut Res Int; 2011 Aug; 19(7):2930-41. PubMed ID: 22359148 [TBL] [Abstract][Full Text] [Related]
32. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Kurniawan TA; Chan GY; Lo WH; Babel S Sci Total Environ; 2006 Aug; 366(2-3):409-26. PubMed ID: 16300818 [TBL] [Abstract][Full Text] [Related]
33. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. Wu FC; Tseng RL; Juang RS J Environ Manage; 2010; 91(4):798-806. PubMed ID: 19917518 [TBL] [Abstract][Full Text] [Related]
34. An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Rathinam K; Singh SP; Arnusch CJ; Kasher R Carbohydr Polym; 2018 Nov; 199():506-515. PubMed ID: 30143156 [TBL] [Abstract][Full Text] [Related]
35. Determination of heavy metal ions in vegetable samples using a magnetic metal-organic framework nanocomposite sorbent. Hassanpour A; Hosseinzadeh-Khanmiri R; Babazadeh M; Abolhasani J; Ghorbani-Kalhor E Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(5):725-36. PubMed ID: 25621454 [TBL] [Abstract][Full Text] [Related]
36. Removal of Cd, Cr, and Pb from aqueous solution by unmodified and modified agricultural wastes. Mahmood-Ul-Hassan M; Suthor V; Rafique E; Yasin M Environ Monit Assess; 2015 Feb; 187(2):19. PubMed ID: 25626568 [TBL] [Abstract][Full Text] [Related]
37. The potential of cost-effective coconut husk for the removal of toxic metal ions for environmental protection. Hasany SM; Ahmad R J Environ Manage; 2006 Nov; 81(3):286-95. PubMed ID: 16713064 [TBL] [Abstract][Full Text] [Related]
38. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Zhao G; Li J; Ren X; Chen C; Wang X Environ Sci Technol; 2011 Dec; 45(24):10454-62. PubMed ID: 22070750 [TBL] [Abstract][Full Text] [Related]
39. Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC. Halim CE; Short SA; Scott JA; Amal R; Low G J Hazard Mater; 2005 Oct; 125(1-3):45-61. PubMed ID: 16043281 [TBL] [Abstract][Full Text] [Related]
40. Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. Divrikli U; Kartal AA; Soylak M; Elci L J Hazard Mater; 2007 Jul; 145(3):459-64. PubMed ID: 17175100 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]