These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12665193)

  • 1. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying.
    Gosselin P; Lacasse FX; Preda M; Thibert R; Clas SD; McMullen JN
    Pharm Dev Technol; 2003; 8(1):11-20. PubMed ID: 12665193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymorphic properties of micronized carbamazepine produced by RESS.
    Gosselin PM; Thibert R; Preda M; McMullen JN
    Int J Pharm; 2003 Feb; 252(1-2):225-33. PubMed ID: 12550798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micronization of dihydroartemisinin by rapid expansion of supercritical solutions.
    Chingunpitak J; Puttipipatkhachorn S; Tozuka Y; Moribe K; Yamamoto K
    Drug Dev Ind Pharm; 2008 Jun; 34(6):609-17. PubMed ID: 18568911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-built supercritical CO2 anti-solvent unit design, construction and operation using carbamazepine.
    Meng D; Falconer J; Krauel-Goellner K; Chen JJ; Farid M; Alany RG
    AAPS PharmSciTech; 2008; 9(3):944-52. PubMed ID: 18690541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micronization and microencapsulation of felodipine by supercritical carbon dioxide.
    Chiou AH; Cheng HC; Wang DP
    J Microencapsul; 2006 May; 23(3):265-76. PubMed ID: 16801239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative physicochemical characterization of phospholipids complex of puerarin formulated by conventional and supercritical methods.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Pharm Res; 2008 Mar; 25(3):563-77. PubMed ID: 17828444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal doping aided by rapid expansion of supercritical solutions.
    Vemavarapu C; Mollan MJ; Needham TE
    AAPS PharmSciTech; 2002; 3(4):E29. PubMed ID: 12916923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS).
    Müllers KC; Paisana M; Wahl MA
    Pharm Res; 2015 Feb; 32(2):702-13. PubMed ID: 25213775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micronization of magnolia bark extract with enhanced dissolution behavior by rapid expansion of supercritical solution.
    He S; Zhang Z; Xu F; Zhang S; Lei Z
    Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):154-9. PubMed ID: 20118572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Micronization of magnolia bark extract by RESS as well as dissolution and pharmacokinetics evaluation].
    He S; Lei ZJ; Zhang SY; Zhang ZY
    Yao Xue Xue Bao; 2009 May; 44(5):532-9. PubMed ID: 19618732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Box-Behnken Design to Investigate the Effect of Process Parameters on the Microparticle Production of Ethenzamide through the Rapid Expansion of the Supercritical Solutions Process.
    Hsu YT; Su CS
    Pharmaceutics; 2020 Jan; 12(1):. PubMed ID: 31947846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strategy to design sustained-release poorly water-soluble drug mesoporous silica microparticles based on supercritical fluid technique.
    Li-Hong W; Xin C; Hui X; Li-Li Z; Jing H; Mei-Juan Z; Jie L; Yi L; Jin-Wen L; Wei Z; Gang C
    Int J Pharm; 2013 Sep; 454(1):135-42. PubMed ID: 23871738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercritical assisted atomization: a novel technology for microparticles preparation of an asthma-controlling drug.
    Della Porta G; De Vittori C; Reverchon E
    AAPS PharmSciTech; 2005 Oct; 6(3):E421-8. PubMed ID: 16354000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micronization of phenylbutazone by rapid expansion of supercritical CO2 solution.
    Moribe K; Tsutsumi S; Morishita S; Shinozaki H; Tozuka Y; Oguchi T; Yamamoto K
    Chem Pharm Bull (Tokyo); 2005 Aug; 53(8):1025-8. PubMed ID: 16079541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.
    Reverchon E; Adami R; Caputo G
    AAPS PharmSciTech; 2007 Dec; 8(4):E114. PubMed ID: 18181535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process.
    Park J; Park HJ; Cho W; Cha KH; Kang YS; Hwang SJ
    Int J Pharm; 2010 Aug; 396(1-2):239-45. PubMed ID: 20599602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption onto Mesoporous Silica Using Supercritical Fluid Technology Improves Dissolution Rate of Carbamazepine-a Poorly Soluble Compound.
    Gandhi AV; Thipsay P; Kirthivasan B; Squillante E
    AAPS PharmSciTech; 2017 Nov; 18(8):3140-3150. PubMed ID: 28534299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of carbamazepine-Gelucire 50/13 microparticles prepared by a spray-congealing process using ultrasounds.
    Passerini N; Perissutti B; Moneghini M; Voinovich D; Albertini B; Cavallari C; Rodriguez L
    J Pharm Sci; 2002 Mar; 91(3):699-707. PubMed ID: 11920755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.
    Perrut M; Jung J; Leboeuf F
    Int J Pharm; 2005 Jan; 288(1):3-10. PubMed ID: 15607252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.