These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 12665193)
21. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations. Nuchuchua O; Every HA; Hofland GW; Jiskoot W Eur J Pharm Biopharm; 2014 Nov; 88(3):919-30. PubMed ID: 25262979 [TBL] [Abstract][Full Text] [Related]
22. Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. da Silva AA; de Matos JR; Formariz TP; Rossanezi G; Scarpa MV; do Egito ES; de Oliveira AG Int J Pharm; 2009 Feb; 368(1-2):45-55. PubMed ID: 18992313 [TBL] [Abstract][Full Text] [Related]
23. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Thakur R; Gupta RB Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406 [TBL] [Abstract][Full Text] [Related]
24. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process. Velaga SP; Bergh S; Carlfors J Eur J Pharm Sci; 2004 Mar; 21(4):501-9. PubMed ID: 14998581 [TBL] [Abstract][Full Text] [Related]
25. Preparation and characterization of micronized artemisinin via a Rapid Expansion of Supercritical Solutions (RESS) Method. Yu H; Zhao X; Zu Y; Zhang X; Zu B; Zhang X Int J Mol Sci; 2012; 13(4):5060-5073. PubMed ID: 22606030 [TBL] [Abstract][Full Text] [Related]
26. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Rudrangi SR; Bhomia R; Trivedi V; Vine GJ; Mitchell JC; Alexander BD; Wicks SR Int J Pharm; 2015 Feb; 479(2):381-90. PubMed ID: 25579867 [TBL] [Abstract][Full Text] [Related]
27. Carbamazepine/betaCD/HPMC solid dispersions. II. Physical characterization. Koester LS; Mayorga P; Pereira VP; Petzhold CL; Bassani VL Drug Dev Ind Pharm; 2003 Feb; 29(2):145-54. PubMed ID: 12648011 [TBL] [Abstract][Full Text] [Related]
28. Study of poly(L-lactide) microparticles based on supercritical CO2. Chen AZ; Pu XM; Kang YQ; Liao L; Yao YD; Yin GF J Mater Sci Mater Med; 2007 Dec; 18(12):2339-45. PubMed ID: 17569002 [TBL] [Abstract][Full Text] [Related]
29. Microparticles of soy lecithin formed by supercritical processes. Badens E; Magnan C; Charbit G Biotechnol Bioeng; 2001 Jan; 72(2):194-204. PubMed ID: 11114657 [TBL] [Abstract][Full Text] [Related]
30. Application of a novel 3-fluid nozzle spray drying process for the microencapsulation of therapeutic agents using incompatible drug-polymer solutions. Sunderland T; Kelly JG; Ramtoola Z Arch Pharm Res; 2015 Apr; 38(4):566-73. PubMed ID: 24170510 [TBL] [Abstract][Full Text] [Related]
31. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Yu Z; Rogers TL; Hu J; Johnston KP; Williams RO Eur J Pharm Biopharm; 2002 Sep; 54(2):221-8. PubMed ID: 12191695 [TBL] [Abstract][Full Text] [Related]
32. Spray drying as a fast and simple technique for the preparation of extended release dipyridamole (DYP) microparticles in a fixed dose combination (FDC) product with aspirin. Hamishehkar H; Valizadeh H; Alasty P; Monajjemzadeh F Drug Res (Stuttg); 2014 Feb; 64(2):104-12. PubMed ID: 24026956 [TBL] [Abstract][Full Text] [Related]
33. Production of Eudragit microparticles by spray-drying technique: influence of experimental parameters on morphological and dimensional characteristics. Esposito E; Roncarati R; Cortesi R; Cervellati F; Nastruzzi C Pharm Dev Technol; 2000; 5(2):267-78. PubMed ID: 10810756 [TBL] [Abstract][Full Text] [Related]
34. Preparation and Characterization of Fenofibrate Microparticles with Surface-Active Additives: Application of a Supercritical Fluid-Assisted Spray-Drying Process. Kim JS; Park H; Ha ES; Kang KT; Kim MS; Hwang SJ Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959341 [TBL] [Abstract][Full Text] [Related]
35. Formulating Inhalable Dry Powders Using Two-Fluid and Three-Fluid Nozzle Spray Drying. Leng D; Thanki K; Foged C; Yang M Pharm Res; 2018 Nov; 35(12):247. PubMed ID: 30386927 [TBL] [Abstract][Full Text] [Related]
36. Effects of spray drying conditions on the physicochemical properties of the Tramadol-Hcl microparticles containing Eudragit(®) RS and RL. Patel AS; Soni T; Thakkar V; Gandhi T J Pharm Bioallied Sci; 2012 Mar; 4(Suppl 1):S50-3. PubMed ID: 23066205 [TBL] [Abstract][Full Text] [Related]
37. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process. Zhang X; Zhao X; Zu Y; Chen X; Lu Q; Ma Y; Yang L Int J Mol Sci; 2012 Oct; 13(10):12598-607. PubMed ID: 23202916 [TBL] [Abstract][Full Text] [Related]
38. Supercritical antisolvent precipitation of PHBV microparticles. Costa MS; Duarte AR; Cardoso MM; Duarte CM Int J Pharm; 2007 Jan; 328(1):72-7. PubMed ID: 16971075 [TBL] [Abstract][Full Text] [Related]
39. Preparation of biodegradable microparticles using solution-enhanced dispersion by supercritical fluids (SEDS). Ghaderi R; Artursson P; Carlfors J Pharm Res; 1999 May; 16(5):676-81. PubMed ID: 10350010 [TBL] [Abstract][Full Text] [Related]
40. Impact of process variables on the micromeritic and physicochemical properties of spray-dried porous microparticles, part I: introduction of a new morphology classification system. Paluch KJ; Tajber L; Corrigan OI; Healy AM J Pharm Pharmacol; 2012 Nov; 64(11):1570-82. PubMed ID: 23058044 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]