BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 12665427)

  • 1. Acetylcholinesterase active centre and gorge conformations analysed by combinatorial mutations and enantiomeric phosphonates.
    Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P
    Biochem J; 2003 Jul; 373(Pt 1):33-40. PubMed ID: 12665427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid residues involved in stereoselective inhibition of cholinesterases with bambuterol.
    Bosak A; Gazić I; Vinković V; Kovarik Z
    Arch Biochem Biophys; 2008 Mar; 471(1):72-6. PubMed ID: 18167304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant cholinesterases possessing enhanced capacity for reactivation of their phosphonylated conjugates.
    Kovarik Z; Radić Z; Berman HA; Simeon-Rudolf V; Reiner E; Taylor P
    Biochemistry; 2004 Mar; 43(11):3222-9. PubMed ID: 15023072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pH dependence of dealkylation in soman-inhibited cholinesterases and their mutants: further evidence for a push-pull mechanism.
    Saxena A; Viragh C; Frazier DS; Kovach IM; Maxwell DM; Lockridge O; Doctor BP
    Biochemistry; 1998 Oct; 37(43):15086-96. PubMed ID: 9790671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of the neurotoxin fasciculin 2 to the acetylcholinesterase peripheral site drastically reduces the association and dissociation rate constants for N-methylacridinium binding to the active site.
    Rosenberry TL; Rabl CR; Neumann E
    Biochemistry; 1996 Jan; 35(3):685-90. PubMed ID: 8547248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL; Cusack B; Davies MP; Fauq A; Rosenberry TL
    Biochemistry; 2003 May; 42(18):5438-52. PubMed ID: 12731886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase.
    Saxena A; Redman AM; Jiang X; Lockridge O; Doctor BP
    Biochemistry; 1997 Dec; 36(48):14642-51. PubMed ID: 9398183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept) to cholinesterases.
    Saxena A; Fedorko JM; Vinayaka CR; Medhekar R; Radić Z; Taylor P; Lockridge O; Doctor BP
    Eur J Biochem; 2003 Nov; 270(22):4447-58. PubMed ID: 14622273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining ligand orientation and transphosphonylation mechanisms on acetylcholinesterase by Rp, Sp enantiomer selectivity and site-specific mutagenesis.
    Taylor P; Hosea NA; Tsigelny I; Radić Z; Berman HA
    Enantiomer; 1997; 2(3-4):249-60. PubMed ID: 9676269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does "butyrylization" of acetylcholinesterase through substitution of the six divergent aromatic amino acids in the active center gorge generate an enzyme mimic of butyrylcholinesterase?
    Kaplan D; Ordentlich A; Barak D; Ariel N; Kronman C; Velan B; Shafferman A
    Biochemistry; 2001 Jun; 40(25):7433-45. PubMed ID: 11412096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline.
    Kovarik Z; Radić Z; Grgas B; Skrinjarić-Spoljar M; Reiner E; Simeon-Rudolf V
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):261-71. PubMed ID: 10446376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric fluorogenic organophosphates for the development of active organophosphate hydrolases with reversed stereoselectivity.
    Amitai G; Adani R; Yacov G; Yishay S; Teitlboim S; Tveria L; Limanovich O; Kushnir M; Meshulam H
    Toxicology; 2007 Apr; 233(1-3):187-98. PubMed ID: 17129656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases.
    Saxena A; Qian N; Kovach IM; Kozikowski AP; Pang YP; Vellom DC; Radić Z; Quinn D; Taylor P; Doctor BP
    Protein Sci; 1994 Oct; 3(10):1770-8. PubMed ID: 7849595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives.
    Grosfeld H; Barak D; Ordentlich A; Velan B; Shafferman A
    Mol Pharmacol; 1996 Sep; 50(3):639-49. PubMed ID: 8794905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates.
    Hosea NA; Radić Z; Tsigelny I; Berman HA; Quinn DM; Taylor P
    Biochemistry; 1996 Aug; 35(33):10995-1004. PubMed ID: 8718893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeric human cholinesterase. Identification of interaction sites responsible for recognition of acetyl- or butyrylcholinesterase-specific ligands.
    Loewenstein Y; Gnatt A; Neville LF; Soreq H
    J Mol Biol; 1993 Nov; 234(2):289-96. PubMed ID: 8230213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity.
    Vellom DC; Radić Z; Li Y; Pickering NA; Camp S; Taylor P
    Biochemistry; 1993 Jan; 32(1):12-7. PubMed ID: 8418833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid residues controlling reactivation of organophosphonyl conjugates of acetylcholinesterase by mono- and bisquaternary oximes.
    Ashani Y; Radić Z; Tsigelny I; Vellom DC; Pickering NA; Quinn DM; Doctor BP; Taylor P
    J Biol Chem; 1995 Mar; 270(11):6370-80. PubMed ID: 7890775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T; Mallender WD; Rosenberry TL
    Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specificity and orientation of trigonal carboxyl esters and tetrahedral alkylphosphonyl esters in cholinesterases.
    Hosea NA; Berman HA; Taylor P
    Biochemistry; 1995 Sep; 34(36):11528-36. PubMed ID: 7547883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.