BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12665597)

  • 1. Deoxynucleotide triphosphate binding mode conserved in Y family DNA polymerases.
    Johnson RE; Trincao J; Aggarwal AK; Prakash S; Prakash L
    Mol Cell Biol; 2003 Apr; 23(8):3008-12. PubMed ID: 12665597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are involved in stabilisation of the incoming nucleotide.
    Truniger V; Lázaro JM; Salas M
    J Mol Biol; 2004 Jan; 335(2):481-94. PubMed ID: 14672657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The unusual UBZ domain of Saccharomyces cerevisiae polymerase η.
    Woodruff RV; Bomar MG; D'Souza S; Zhou P; Walker GC
    DNA Repair (Amst); 2010 Nov; 9(11):1130-41. PubMed ID: 20837403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate.
    Washington MT; Wolfle WT; Spratt TE; Prakash L; Prakash S
    Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5113-8. PubMed ID: 12692307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid architecture that influences dNTP insertion efficiency in Y-family DNA polymerase V of E. coli.
    Seo KY; Yin J; Donthamsetti P; Chandani S; Lee CH; Loechler EL
    J Mol Biol; 2009 Sep; 392(2):270-82. PubMed ID: 19607844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid substitutions at conserved tyrosine 52 alter fidelity and bypass efficiency of human DNA polymerase eta.
    Glick E; Chau JS; Vigna KL; McCulloch SD; Adman ET; Kunkel TA; Loeb LA
    J Biol Chem; 2003 May; 278(21):19341-6. PubMed ID: 12644469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology modeling of four Y-family, lesion-bypass DNA polymerases: the case that E. coli Pol IV and human Pol kappa are orthologs, and E. coli Pol V and human Pol eta are orthologs.
    Lee CH; Chandani S; Loechler EL
    J Mol Graph Model; 2006 Sep; 25(1):87-102. PubMed ID: 16386932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis.
    Trincao J; Johnson RE; Escalante CR; Prakash S; Prakash L; Aggarwal AK
    Mol Cell; 2001 Aug; 8(2):417-26. PubMed ID: 11545743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology.
    Kirk BW; Kuchta RD
    Biochemistry; 1999 Jun; 38(24):7727-36. PubMed ID: 10387012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical evolution of DNA polymerase eta: properties of plant, human, and yeast proteins.
    Hoffman PD; Curtis MJ; Iwai S; Hays JB
    Biochemistry; 2008 Apr; 47(16):4583-96. PubMed ID: 18366182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and mechanistic relationships between nucleic acid polymerases.
    Sousa R
    Trends Biochem Sci; 1996 May; 21(5):186-90. PubMed ID: 8871404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures.
    Cannistraro VJ; Taylor JS
    J Biol Chem; 2007 Apr; 282(15):11188-96. PubMed ID: 17303570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substitution of a residue contacting the triphosphate moiety of the incoming nucleotide increases the fidelity of yeast DNA polymerase zeta.
    Howell CA; Kondratick CM; Washington MT
    Nucleic Acids Res; 2008 Mar; 36(5):1731-40. PubMed ID: 18263611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unique error signature for human DNA polymerase nu.
    Arana ME; Takata K; Garcia-Diaz M; Wood RD; Kunkel TA
    DNA Repair (Amst); 2007 Feb; 6(2):213-23. PubMed ID: 17118716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical properties of Saccharomyces cerevisiae DNA polymerase IV.
    Bebenek K; Garcia-Diaz M; Patishall SR; Kunkel TA
    J Biol Chem; 2005 May; 280(20):20051-8. PubMed ID: 15778218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phi29 DNA polymerase residues Tyr59, His61 and Phe69 of the highly conserved ExoII motif are essential for interaction with the terminal protein.
    Eisenbrandt R; Lázaro JM; Salas M; de Vega M
    Nucleic Acids Res; 2002 Mar; 30(6):1379-86. PubMed ID: 11884636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of base stacking and sequence context in the inhibition of yeast DNA polymerase eta by pyrene nucleotide.
    Hwang H; Taylor JS
    Biochemistry; 2004 Nov; 43(46):14612-23. PubMed ID: 15544332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide.
    Truniger V; Lázaro JM; Esteban FJ; Blanco L; Salas M
    Nucleic Acids Res; 2002 Apr; 30(7):1483-92. PubMed ID: 11917008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.