These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1266568)

  • 1. Representation of cutaneous afferents by fluoride-resistant acid phosphatase (FRAP)-active terminals in the rat substantia gelatinosa rolandi.
    Knyihár E; Csillik B
    Acta Neurol Scand; 1976 Mar; 53(3):217-25. PubMed ID: 1266568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluoride-resistant acid phosphatase (FRAP)-positive afferent terminals make synaptic contact with interneuronal soma in the substantia gelatinosa of the mouse spinal dorsal horn.
    Hiura A; Nasu F; Kuwahara M; Ishizuka H
    Okajimas Folia Anat Jpn; 1997 Aug; 74(2-3):109-13. PubMed ID: 9341296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of glomeruli with fluoride-resistant acid phosphatase (FRAP)-containing terminals in the substantia gelatinosa of the rat.
    Ribeiro-Da-Silva A; Castro-Lopes JM; Coimbra A
    Brain Res; 1986 Jul; 377(2):323-9. PubMed ID: 3730867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRAP-positive and capsaicin-sensitive terminals in the substantia gelatinosa of the mouse spinal trigeminal nucleus caudalis.
    Hiura A; Nasu F; Ishizuka H
    Okajimas Folia Anat Jpn; 1999 May; 76(1):33-40. PubMed ID: 10409843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping and plasticity of acid phosphatase afferents in the rat dorsal horn.
    Devor M; Claman D
    Brain Res; 1980 May; 190(1):17-28. PubMed ID: 6155166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative synaptoneogenesis in the Mammalian spinal cord: dynamics of synaptochemical restoration in the Rolando Substance after transganglionic degenerative atrophy.
    Csillik B; Knyihár-Csillik E
    J Neural Transm; 1981; 52(4):303-17. PubMed ID: 7334365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid phosphatase as a selective marker for a class of small sensory ganglion cells in several mammals: spinal cord distribution, histochemical properties, and relation to fluoride-resistant acid phosphatase (FRAP) of rodents.
    Silverman JD; Kruger L
    Somatosens Res; 1988; 5(3):219-46. PubMed ID: 3128853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of peripheral anatomy on the fine structure and histochemistry of the Rolando substance: degenerative atrophy of central processes of pseudounipolar cells.
    Knyihár E; Csillik B
    Exp Brain Res; 1976 Aug; 26(1):73-87. PubMed ID: 964328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The localization of fluoride-resistant acid phosphatase (FRAP) in the pelvic nerves and sacral spinal cord of rats.
    McMahon SB
    Neurosci Lett; 1986 Mar; 64(3):305-10. PubMed ID: 2421214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computer-aided analysis of the effect of peripheral nerve transection on TMPase activity of substantia gelatinosa Rolandi.
    Bezzegh A; Knyihár-Csillik E; Böti S; Tajti J; Záborszky Z; Csillik B
    Z Mikrosk Anat Forsch; 1986; 100(3):428-32. PubMed ID: 3020818
    [No Abstract]   [Full Text] [Related]  

  • 11. Appearance of acid phosphatase in neonatal rat substantia gelatinosa.
    Mattio TG; Rosenquist TH; Kirby ML
    Exp Brain Res; 1981; 41(3-4):411-3. PubMed ID: 7215501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons.
    Knyihár-Csillik E; Bezzegh A; Böti S; Csillik B
    J Histochem Cytochem; 1986 Mar; 34(3):363-71. PubMed ID: 3005391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine structure and fluoride resistant acid phosphatase activity of electron dense sinusoid terminals in the substantia gelatinosa Rolandi of the rat after dorsal root transection.
    Knyihár E; László I; Tornyos S
    Exp Brain Res; 1974 Mar; 19(5):529-44. PubMed ID: 4852049
    [No Abstract]   [Full Text] [Related]  

  • 14. Mapping of spinal projection of primary nociceptive neurones in the rat.
    Kovács A; Ferencsik M
    Acta Morphol Hung; 1986; 34(3):187-94. PubMed ID: 3037858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural localization of acid phosphatase in synaptic terminals of the rat substantia gelatinosa Rolandi.
    Coimbra A; Magalhâes MM; Sodré-Borges BP
    Brain Res; 1970 Aug; 22(1):142-6. PubMed ID: 4195632
    [No Abstract]   [Full Text] [Related]  

  • 16. FRAP: histochemistry of the primary nociceptive neuron.
    Knyihár-Csillik E; Csillik B
    Prog Histochem Cytochem; 1981; 14(1):1-137. PubMed ID: 6170090
    [No Abstract]   [Full Text] [Related]  

  • 17. Plasticity of acid phosphatase (FRAP) afferent terminal fields and of dorsal horn cell growth in the neonatal rat.
    Fitzgerald M; Vrbová G
    J Comp Neurol; 1985 Oct; 240(4):414-22. PubMed ID: 3880359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transganglionic regulation of central terminals of dorsal root ganglion cells by nerve growth factor (NGF).
    Csillik B; Schwab ME; Thoenen H
    Brain Res; 1985 Apr; 331(1):11-5. PubMed ID: 2580595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of aspartate aminotransferase in structures of a human sensory neuron.
    Okhotin VE; Kalinichenko SG; Pigolkin YuI ; Motavkin PA
    Neurosci Behav Physiol; 1993; 23(4):364-70. PubMed ID: 8413920
    [No Abstract]   [Full Text] [Related]  

  • 20. Postnatal maturation of primary afferent terminations in the substantia gelatinosa of the rat spinal cord. An electron microscopic study.
    Pignatelli D; Ribeiro-da-Silva A; Coimbra A
    Brain Res; 1989 Jul; 491(1):33-44. PubMed ID: 2765883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.