BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 12665853)

  • 1. Structural insight into the role of the ribosomal tunnel in cellular regulation.
    Berisio R; Schluenzen F; Harms J; Bashan A; Auerbach T; Baram D; Yonath A
    Nat Struct Biol; 2003 May; 10(5):366-70. PubMed ID: 12665853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.
    Fulle S; Gohlke H
    J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A crevice adjoining the ribosome tunnel: hints for cotranslational folding.
    Amit M; Berisio R; Baram D; Harms J; Bashan A; Yonath A
    FEBS Lett; 2005 Jun; 579(15):3207-13. PubMed ID: 15943964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal crystallography: peptide bond formation and its inhibition.
    Bashan A; Zarivach R; Schluenzen F; Agmon I; Harms J; Auerbach T; Baram D; Berisio R; Bartels H; Hansen HA; Fucini P; Wilson D; Peretz M; Kessler M; Yonath A
    Biopolymers; 2003 Sep; 70(1):19-41. PubMed ID: 12925991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel.
    Bornemann T; Jöckel J; Rodnina MV; Wintermeyer W
    Nat Struct Mol Biol; 2008 May; 15(5):494-9. PubMed ID: 18391966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling.
    Wilson DN; Beckmann R
    Curr Opin Struct Biol; 2011 Apr; 21(2):274-82. PubMed ID: 21316217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ribosome recycling revisited].
    Vesper O; Wilson DN
    Mol Biol (Mosk); 2006; 40(4):742-50. PubMed ID: 16913233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nascent peptide in the "birth canal" of the ribosome.
    Mankin AS
    Trends Biochem Sci; 2006 Jan; 31(1):11-3. PubMed ID: 16337126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Ribosomal Protein uL22 Modulates the Shape of the Protein Exit Tunnel.
    Wekselman I; Zimmerman E; Davidovich C; Belousoff M; Matzov D; Krupkin M; Rozenberg H; Bashan A; Friedlander G; Kjeldgaard J; Ingmer H; Lindahl L; Zengel JM; Yonath A
    Structure; 2017 Aug; 25(8):1233-1241.e3. PubMed ID: 28689968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlating ribosome function with high-resolution structures.
    Bashan A; Yonath A
    Trends Microbiol; 2008 Jul; 16(7):326-35. PubMed ID: 18547810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cradle for new proteins: trigger factor at the ribosome.
    Maier T; Ferbitz L; Deuerling E; Ban N
    Curr Opin Struct Biol; 2005 Apr; 15(2):204-12. PubMed ID: 15837180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry at the active site of the ribosome: structural and functional implications.
    Agmon I; Bashan A; Zarivach R; Yonath A
    Biol Chem; 2005 Sep; 386(9):833-44. PubMed ID: 16164408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography.
    Zhao Q; Ofverstedt LG; Skoglund U; Isaksson LA
    Exp Cell Res; 2004 Oct; 300(1):190-201. PubMed ID: 15383326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Side-chain recognition and gating in the ribosome exit tunnel.
    Petrone PM; Snow CD; Lucent D; Pande VS
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16549-54. PubMed ID: 18946046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the signal recognition particle interacting with the elongation-arrested ribosome.
    Halic M; Becker T; Pool MR; Spahn CM; Grassucci RA; Frank J; Beckmann R
    Nature; 2004 Feb; 427(6977):808-14. PubMed ID: 14985753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.
    Bhushan S; Meyer H; Starosta AL; Becker T; Mielke T; Berninghausen O; Sattler M; Wilson DN; Beckmann R
    Mol Cell; 2010 Oct; 40(1):138-46. PubMed ID: 20932481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation.
    Diaconu M; Kothe U; Schlünzen F; Fischer N; Harms JM; Tonevitsky AG; Stark H; Rodnina MV; Wahl MC
    Cell; 2005 Jul; 121(7):991-1004. PubMed ID: 15989950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects.
    Baram D; Yonath A
    FEBS Lett; 2005 Feb; 579(4):948-54. PubMed ID: 15680980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction.
    Schlünzen F; Wilson DN; Tian P; Harms JM; McInnes SJ; Hansen HA; Albrecht R; Buerger J; Wilbanks SM; Fucini P
    Structure; 2005 Nov; 13(11):1685-94. PubMed ID: 16271892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.