BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 12666166)

  • 1. Mechanistic insights into oxidosqualene cyclizations through homology modeling.
    Schulz-Gasch T; Stahl M
    J Comput Chem; 2003 Apr; 24(6):741-53. PubMed ID: 12666166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase.
    Thoma R; Schulz-Gasch T; D'Arcy B; Benz J; Aebi J; Dehmlow H; Hennig M; Stihle M; Ruf A
    Nature; 2004 Nov; 432(7013):118-22. PubMed ID: 15525992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase: a chemistry-biology interdisciplinary study of the protein's structure-function-reaction mechanism relationships.
    Wu TK; Chang CH; Liu YT; Wang TT
    Chem Rec; 2008; 8(5):302-25. PubMed ID: 18956480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The triterpene cyclase protein family: a systematic analysis.
    Racolta S; Juhl PB; Sirim D; Pleiss J
    Proteins; 2012 Aug; 80(8):2009-19. PubMed ID: 22488823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The binding site for an inhibitor of squalene:hopene cyclase determined using photoaffinity labeling and molecular modeling.
    Dang T; Abe I; Zheng YF; Prestwich GD
    Chem Biol; 1999 Jun; 6(6):333-41. PubMed ID: 10375539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of the membrane protein squalene-hopene cyclase at 2.0 A resolution.
    Wendt KU; Lenhart A; Schulz GE
    J Mol Biol; 1999 Feb; 286(1):175-87. PubMed ID: 9931258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenylalanine 445 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences C-Ring cyclization and deprotonation reactions.
    Wu TK; Liu YT; Chiu FH; Chang CH
    Org Lett; 2006 Oct; 8(21):4691-4. PubMed ID: 17020279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squalene-hopene cyclases.
    Siedenburg G; Jendrossek D
    Appl Environ Microbiol; 2011 Jun; 77(12):3905-15. PubMed ID: 21531832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Access of the substrate to the active site of squalene and oxidosqualene cyclases: comparative inhibition, site-directed mutagenesis and homology-modelling studies.
    Oliaro-Bosso S; Schulz-Gasch T; Taramino S; Scaldaferri M; Viola F; Balliano G
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1202-5. PubMed ID: 16246081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization.
    Ghimire GP; Oh TJ; Lee HC; Sohng JK
    Biotechnol Lett; 2009 Apr; 31(4):565-9. PubMed ID: 19116691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T; Shimizu K; Sato T
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract]   [Full Text] [Related]  

  • 12. Conjugated methyl sulfide and phenyl sulfide derivatives of oxidosqualene as inhibitors of oxidosqualene and squalene-hopene cyclases.
    Rocco F; Bosso SO; Viola F; Milla P; Roma G; Grossi G; Ceruti M
    Lipids; 2003 Mar; 38(3):201-7. PubMed ID: 12784859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vinyl sulfide derivatives of truncated oxidosqualene as selective inhibitors of oxidosqualene and squalene-hopene cyclases.
    Ceruti M; Balliano G; Rocco F; Milla P; Arpicco S; Cattel L; Viola F
    Lipids; 2001 Jun; 36(6):629-36. PubMed ID: 11485168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan 232 within oxidosqualene-lanosterol cyclase from Saccharomyces cerevisiae influences rearrangement and deprotonation but not cyclization reactions.
    Wu TK; Yu MT; Liu YT; Chang CH; Wang HJ; Diau EW
    Org Lett; 2006 Mar; 8(7):1319-22. PubMed ID: 16562881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of the substrate's prefolded conformation and cyclization stereochemistry of oxidosqualene-lanosterol cyclase of Saccharomyces cerevisiae by substitution at phenylalanine 699.
    Wu TK; Chang CH; Wen HY; Liu YT; Li WH; Wang TT; Shie WS
    Org Lett; 2010 Feb; 12(3):500-3. PubMed ID: 20055456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T; Prestwich GD
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prokaryotic squalene-hopene cyclases can be converted to citronellal cyclases by single amino acid exchange.
    Siedenburg G; Breuer M; Jendrossek D
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1571-80. PubMed ID: 22526778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase.
    Lodeiro S; Schulz-Gasch T; Matsuda SP
    J Am Chem Soc; 2005 Oct; 127(41):14132-3. PubMed ID: 16218577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and inhibition studies of sulfur-substituted squalene oxide analogues as mechanism-based inhibitors of 2,3-oxidosqualene-lanosterol cyclase.
    Stach D; Zheng YF; Perez AL; Oehlschlager AC; Abe I; Prestwich GD; Hartman PG
    J Med Chem; 1997 Jan; 40(2):201-9. PubMed ID: 9003518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification, kinetics, inhibitors and CD for recombinant β-amyrin synthase from Euphorbia tirucalli L and functional analysis of the DCTA motif, which is highly conserved among oxidosqualene cyclases.
    Ito R; Masukawa Y; Hoshino T
    FEBS J; 2013 Mar; 280(5):1267-80. PubMed ID: 23294602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.