BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 12667057)

  • 1. Interdependence of backbone flexibility, residue conservation, and enzyme function: a case study on beta1,4-galactosyltransferase-I.
    Gunasekaran K; Ma B; Ramakrishnan B; Qasba PK; Nussinov R
    Biochemistry; 2003 Apr; 42(13):3674-87. PubMed ID: 12667057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulating functional loop movements: the role of highly conserved residues in the correlated loop motions.
    Gunasekaran K; Nussinov R
    Chembiochem; 2004 Feb; 5(2):224-30. PubMed ID: 14760744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose.
    Gastinel LN; Cambillau C; Bourne Y
    EMBO J; 1999 Jul; 18(13):3546-57. PubMed ID: 10393171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of beta1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site.
    Ramakrishnan B; Balaji PV; Qasba PK
    J Mol Biol; 2002 Apr; 318(2):491-502. PubMed ID: 12051854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I.
    Ramakrishnan B; Qasba PK
    J Mol Biol; 2001 Jun; 310(1):205-18. PubMed ID: 11419947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Met344His mutation on the conformational dynamics of bovine beta-1,4-galactosyltransferase: crystal structure of the Met344His mutant in complex with chitobiose.
    Ramakrishnan B; Boeggeman E; Qasba PK
    Biochemistry; 2004 Oct; 43(39):12513-22. PubMed ID: 15449940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational changes induced by binding UDP-2F-galactose to alpha-1,3 galactosyltransferase- implications for catalysis.
    Jamaluddin H; Tumbale P; Withers SG; Acharya KR; Brew K
    J Mol Biol; 2007 Jun; 369(5):1270-81. PubMed ID: 17493636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.
    Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K
    Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase.
    Zhang Y; Deshpande A; Xie Z; Natesh R; Acharya KR; Brew K
    Glycobiology; 2004 Dec; 14(12):1295-302. PubMed ID: 15229192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of UDP-galactose binding by alpha-1,3-galactosyltransferase (alpha3GT): role of negative charge on aspartic acid 316 in structure and activity.
    Tumbale P; Jamaluddin H; Thiyagarajan N; Brew K; Acharya KR
    Biochemistry; 2008 Aug; 47(33):8711-8. PubMed ID: 18651752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence homology and structural analysis of the clostridial neurotoxins.
    Lacy DB; Stevens RC
    J Mol Biol; 1999 Sep; 291(5):1091-104. PubMed ID: 10518945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the closed conformation of the beta 1,4-galactosyltransferase-1 (beta 4Gal-T1) in the presence and absence of alpha-lactalbumin (LA).
    Ramakrishnan B; Qasba PK
    J Biomol Struct Dyn; 2003 Aug; 21(1):1-8. PubMed ID: 12854954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of glycosyltransferase LgtC.
    Snajdrová L; Kulhánek P; Imberty A; Koca J
    Carbohydr Res; 2004 Apr; 339(5):995-1006. PubMed ID: 15010307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of tryptophan 314 in the conformational changes of beta1,4-galactosyltransferase-I.
    Ramasamy V; Ramakrishnan B; Boeggeman E; Qasba PK
    J Mol Biol; 2003 Aug; 331(5):1065-76. PubMed ID: 12927542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices.
    Ramakrishnan B; Boeggeman E; Qasba PK
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1113-8. PubMed ID: 11883930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of a mutant (betaK87T) tryptophan synthase alpha2beta2 complex with ligands bound to the active sites of the alpha- and beta-subunits reveal ligand-induced conformational changes.
    Rhee S; Parris KD; Hyde CC; Ahmed SA; Miles EW; Davies DR
    Biochemistry; 1997 Jun; 36(25):7664-80. PubMed ID: 9201907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding.
    Moore SA; Kingston RL; Loomes KM; Hernell O; Bläckberg L; Baker HM; Baker EN
    J Mol Biol; 2001 Sep; 312(3):511-23. PubMed ID: 11563913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.
    Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refinement of the conformation of UDP-galactose bound to galactosyltransferase using the STD NMR intensity-restrained CORCEMA optimization.
    Jayalakshmi V; Biet T; Peters T; Krishna NR
    J Am Chem Soc; 2004 Jul; 126(28):8610-1. PubMed ID: 15250687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino-acid substitution in the disordered loop of blood group B-glycosyltransferase enzyme causes weak B phenotype.
    Yazer MH; Denomme GA; Rose NL; Palcic MM
    Transfusion; 2005 Jul; 45(7):1178-82. PubMed ID: 15987364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.