BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 12667065)

  • 1. Characterization of an Escherichia coli mutant MutY with a cysteine to alanine mutation at the iron-sulfur cluster domain.
    Lu AL; Wright PM
    Biochemistry; 2003 Apr; 42(13):3742-50. PubMed ID: 12667065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY.
    Golinelli MP; Chmiel NH; David SS
    Biochemistry; 1999 Jun; 38(22):6997-7007. PubMed ID: 10353811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY.
    Porello SL; Cannon MJ; David SS
    Biochemistry; 1998 May; 37(18):6465-75. PubMed ID: 9572864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific recognition of A/G and A/7,8-dihydro-8-oxoguanine (8-oxoG) mismatches by Escherichia coli MutY: removal of the C-terminal domain preferentially affects A/8-oxoG recognition.
    Gogos A; Cillo J; Clarke ND; Lu AL
    Biochemistry; 1996 Dec; 35(51):16665-71. PubMed ID: 8988002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positively charged residues within the iron-sulfur cluster loop of E. coli MutY participate in damage recognition and removal.
    Chepanoske CL; Golinelli MP; Williams SD; David SS
    Arch Biochem Biophys; 2000 Aug; 380(1):11-9. PubMed ID: 10900127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noncysteinyl coordination to the [4Fe-4S]2+ cluster of the DNA repair adenine glycosylase MutY introduced via site-directed mutagenesis. Structural characterization of an unusual histidinyl-coordinated cluster.
    Messick TE; Chmiel NH; Golinelli MP; Langer MR; Joshua-Tor L; David SS
    Biochemistry; 2002 Mar; 41(12):3931-42. PubMed ID: 11900536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C-terminal domain of Escherichia coli MutY is involved in DNA binding and glycosylase activities.
    Li L; Lu AL
    Nucleic Acids Res; 2003 Jun; 31(12):3038-49. PubMed ID: 12799430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The C-terminal domain of the adenine-DNA glycosylase MutY confers specificity for 8-oxoguanine.adenine mispairs and may have evolved from MutT, an 8-oxo-dGTPase.
    Noll DM; Gogos A; Granek JA; Clarke ND
    Biochemistry; 1999 May; 38(20):6374-9. PubMed ID: 10350454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of A/G and A/8-oxoG mismatches by MutY adenine DNA glycosylase.
    Lu AL
    Methods Mol Biol; 2000; 152():3-16. PubMed ID: 10957964
    [No Abstract]   [Full Text] [Related]  

  • 10. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters.
    Boal AK; Yavin E; Lukianova OA; O'Shea VL; David SS; Barton JK
    Biochemistry; 2005 Jun; 44(23):8397-407. PubMed ID: 15938629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of 2-hydroxyadenine DNA glycosylase activity of Escherichia coli MutY protein.
    Hashiguchi K; Zhang QM; Sugiyama H; Ikeda S; Yonei S
    Int J Radiat Biol; 2002 Jul; 78(7):585-92. PubMed ID: 12079537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MutY DNA glycosylase: base release and intermediate complex formation.
    Zharkov DO; Grollman AP
    Biochemistry; 1998 Sep; 37(36):12384-94. PubMed ID: 9730810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenine Glycosylase MutY of Corynebacterium pseudotuberculosis presents the antimutator phenotype and evidences of glycosylase/AP lyase activity in vitro.
    de Faria RC; Vila-Nova LG; Bitar M; Resende BC; Arantes LS; Rebelato AB; Azevedo VAC; Franco GR; Machado CR; Santos LLD; de Oliveira Lopes D
    Infect Genet Evol; 2016 Oct; 44():318-329. PubMed ID: 27456281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily.
    Guan Y; Manuel RC; Arvai AS; Parikh SS; Mol CD; Miller JH; Lloyd S; Tainer JA
    Nat Struct Biol; 1998 Dec; 5(12):1058-64. PubMed ID: 9846876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli MutY and Fpg utilize a processive mechanism for target location.
    Francis AW; David SS
    Biochemistry; 2003 Jan; 42(3):801-10. PubMed ID: 12534293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli MutY protein has a guanine-DNA glycosylase that acts on 7,8-dihydro-8-oxoguanine:guanine mispair to prevent spontaneous G:C-->C:G transversions.
    Zhang QM; Ishikawa N; Nakahara T; Yonei S
    Nucleic Acids Res; 1998 Oct; 26(20):4669-75. PubMed ID: 9753736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning, overexpression, and biochemical characterization of the catalytic domain of MutY.
    Manuel RC; Lloyd RS
    Biochemistry; 1997 Sep; 36(37):11140-52. PubMed ID: 9287157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a Schiff base intermediate is not required for the adenine glycosylase activity of Escherichia coli MutY.
    Williams SD; David SS
    Biochemistry; 1999 Nov; 38(47):15417-24. PubMed ID: 10569924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the functional consequences of inherited variants of the hMYH adenine glycosylase associated with colorectal cancer: complementation assays with hMYH variants and pre-steady-state kinetics of the corresponding mutated E.coli enzymes.
    Chmiel NH; Livingston AL; David SS
    J Mol Biol; 2003 Mar; 327(2):431-43. PubMed ID: 12628248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helicobacter pylori genes involved in avoidance of mutations induced by 8-oxoguanine.
    Mathieu A; O'Rourke EJ; Radicella JP
    J Bacteriol; 2006 Nov; 188(21):7464-9. PubMed ID: 16936028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.