BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12667458)

  • 1. Coupled tRNA(Sec)-dependent assembly of the selenocysteine decoding apparatus.
    Zavacki AM; Mansell JB; Chung M; Klimovitsky B; Harney JW; Berry MJ
    Mol Cell; 2003 Mar; 11(3):773-81. PubMed ID: 12667458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding apparatus for eukaryotic selenocysteine insertion.
    Tujebajeva RM; Copeland PR; Xu XM; Carlson BA; Harney JW; Driscoll DM; Hatfield DL; Berry MJ
    EMBO Rep; 2000 Aug; 1(2):158-63. PubMed ID: 11265756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2.
    Copeland PR; Stepanik VA; Driscoll DM
    Mol Cell Biol; 2001 Mar; 21(5):1491-8. PubMed ID: 11238886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
    Bubenik JL; Miniard AC; Driscoll DM
    RNA Biol; 2014; 11(11):1402-13. PubMed ID: 25692238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes.
    Chavatte L; Brown BA; Driscoll DM
    Nat Struct Mol Biol; 2005 May; 12(5):408-16. PubMed ID: 15821744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy.
    Low SC; Grundner-Culemann E; Harney JW; Berry MJ
    EMBO J; 2000 Dec; 19(24):6882-90. PubMed ID: 11118223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic selenocysteine incorporation follows a nonprocessive mechanism that competes with translational termination.
    Nasim MT; Jaenecke S; Belduz A; Kollmus H; Flohé L; McCarthy JE
    J Biol Chem; 2000 May; 275(20):14846-52. PubMed ID: 10809727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SECIS binding protein (SBP) is distinct from selenocysteyl-tRNA protecting factor (SePF).
    Fujiwara T; Busch K; Gross HJ; Mizutani T
    Biochimie; 1999 Mar; 81(3):213-8. PubMed ID: 10385002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors and selenocysteine insertion sequence requirements for the synthesis of selenoproteins from a gram-positive anaerobe in Escherichia coli.
    Gursinsky T; Gröbe D; Schierhorn A; Jäger J; Andreesen JR; Söhling B
    Appl Environ Microbiol; 2008 Mar; 74(5):1385-93. PubMed ID: 18165360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of selenocysteine incorporation reveals intrinsic regulation by SECIS elements.
    Gupta N; DeMong LW; Banda S; Copeland PR
    J Mol Biol; 2013 Jul; 425(14):2415-22. PubMed ID: 23624110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and efficiency in vivo of UGA-directed selenocysteine insertion at the ribosome.
    Suppmann S; Persson BC; Böck A
    EMBO J; 1999 Apr; 18(8):2284-93. PubMed ID: 10205181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of the mRNA selenocysteine insertion sequence by the specialized translational elongation factor SELB.
    Ringquist S; Schneider D; Gibson T; Baron C; Böck A; Gold L
    Genes Dev; 1994 Feb; 8(3):376-85. PubMed ID: 8314089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The selenocysteine-specific elongation factor contains a novel and multi-functional domain.
    Gonzalez-Flores JN; Gupta N; DeMong LW; Copeland PR
    J Biol Chem; 2012 Nov; 287(46):38936-45. PubMed ID: 22992746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowing when not to stop: selenocysteine incorporation in eukaryotes.
    Low SC; Berry MJ
    Trends Biochem Sci; 1996 Jun; 21(6):203-8. PubMed ID: 8744353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome.
    Hüttenhofer A; Heider J; Böck A
    Nucleic Acids Res; 1996 Oct; 24(20):3903-10. PubMed ID: 8918790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck.
    Stoytcheva Z; Tujebajeva RM; Harney JW; Berry MJ
    Mol Cell Biol; 2006 Dec; 26(24):9177-84. PubMed ID: 17000762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel insight into the mechanism of mammalian selenoprotein synthesis.
    Kossinova O; Malygin A; Krol A; Karpova G
    RNA; 2013 Aug; 19(8):1147-58. PubMed ID: 23788723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro.
    Miller C; Bröcker MJ; Prat L; Ip K; Chirathivat N; Feiock A; Veszprémi M; Söll D
    FEBS Lett; 2015 Aug; 589(17):2194-9. PubMed ID: 26160755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon.
    Fletcher JE; Copeland PR; Driscoll DM
    RNA; 2000 Nov; 6(11):1573-84. PubMed ID: 11105757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.