These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 12667610)
1. Water and lipid relations in beech (Fagus sylvatica L.) seeds and its effect on storage behaviour. Pukacka S; Hoffmann SK; Goslar J; Pukacki PM; Wójkiewicz E Biochim Biophys Acta; 2003 Apr; 1621(1):48-56. PubMed ID: 12667610 [TBL] [Abstract][Full Text] [Related]
2. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. Pukacka S; Ratajczak E J Plant Physiol; 2005 Aug; 162(8):873-85. PubMed ID: 16146313 [TBL] [Abstract][Full Text] [Related]
3. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. Ratajczak E; Małecka A; Bagniewska-Zadworna A; Kalemba EM J Plant Physiol; 2015 Feb; 174():147-56. PubMed ID: 25462977 [TBL] [Abstract][Full Text] [Related]
4. Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. Pukacka S; Ratajczak E; Kalemba E J Plant Physiol; 2009 Sep; 166(13):1381-90. PubMed ID: 19359065 [TBL] [Abstract][Full Text] [Related]
5. A study of water relations in neem (Azadirachta indica) seed that is characterized by complex storage behaviour. Sacandé M; Buitink J; Hoekstra FA J Exp Bot; 2000 Mar; 51(344):635-43. PubMed ID: 10938819 [TBL] [Abstract][Full Text] [Related]
6. Regulation of thiol metabolism as a factor that influences the development and storage capacity of beech seeds. Ratajczak E; Staszak AM; Wojciechowska N; Bagniewska-Zadworna A; Dietz KJ J Plant Physiol; 2019 Aug; 239():61-70. PubMed ID: 31200171 [TBL] [Abstract][Full Text] [Related]
7. Identification of DNA Methylation Changes in European Beech Seeds during Desiccation and Storage. Michalak M; Plitta-Michalak BP; Suszka J; Naskręt-Barciszewska MZ; Kotlarski S; Barciszewski J; Chmielarz P Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834975 [TBL] [Abstract][Full Text] [Related]
8. The association of protein-bound methionine sulfoxide with proteomic basis for aging in beech seeds. Kalemba EM; Gevaert K; Impens F; Dufour S; Czerwoniec A BMC Plant Biol; 2024 May; 24(1):377. PubMed ID: 38714916 [TBL] [Abstract][Full Text] [Related]
9. Characterization of molecular mobility in seed tissues: an electron paramagnetic resonance spin probe study. Buitink J; Hemminga MA; Hoekstra FA Biophys J; 1999 Jun; 76(6):3315-22. PubMed ID: 10354457 [TBL] [Abstract][Full Text] [Related]
10. Localization and Dynamics of the Methionine Sulfoxide Reductases MsrB1 and MsrB2 in Beech Seeds. Wojciechowska N; Bagniewska-Zadworna A; Minicka J; Michalak KM; Kalemba EM Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401671 [TBL] [Abstract][Full Text] [Related]
11. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: influence of abscisic and gibberellic acids. Pawłowski TA Proteomics; 2007 Jun; 7(13):2246-57. PubMed ID: 17533642 [TBL] [Abstract][Full Text] [Related]
12. Dynamical transition in molecular glasses and proteins observed by spin relaxation of nitroxide spin probes and labels. Golysheva EA; Shevelev GY; Dzuba SA J Chem Phys; 2017 Aug; 147(6):064501. PubMed ID: 28810753 [TBL] [Abstract][Full Text] [Related]
13. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field. Shimoyama Y; Eriksson LE; Ehrenberg A Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243 [TBL] [Abstract][Full Text] [Related]
14. Optimizing seed water content: relevance to storage stability and molecular mobility. Zhang M; Zhuo JJ; Wang X; Wu S; Wang XF J Integr Plant Biol; 2010 Mar; 52(3):324-31. PubMed ID: 20377693 [TBL] [Abstract][Full Text] [Related]
15. MR Study of Water Distribution in a Beech ( Mikac U; Merela M; Oven P; Sepe A; Serša I Molecules; 2021 Jul; 26(14):. PubMed ID: 34299580 [TBL] [Abstract][Full Text] [Related]
16. [The effect of light and temperature of the CO Schulze ED Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125 [TBL] [Abstract][Full Text] [Related]
17. Age-related changes in protein metabolism of beech (Fagus sylvatica L.) seeds during alleviation of dormancy and in the early stage of germination. Ratajczak E; Kalemba EM; Pukacka S Plant Physiol Biochem; 2015 Sep; 94():114-21. PubMed ID: 26071872 [TBL] [Abstract][Full Text] [Related]
18. Relationship between mitochondrial changes and seed aging as a limitation of viability for the storage of beech seed ( Małecka A; Ciszewska L; Staszak A; Ratajczak E PeerJ; 2021; 9():e10569. PubMed ID: 33552713 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of a dehydrin protein from Fagus sylvatica seeds using experimental and in silico approaches. Kalemba EM; Litkowiec M Plant Physiol Biochem; 2015 Dec; 97():246-54. PubMed ID: 26492132 [TBL] [Abstract][Full Text] [Related]
20. Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Steppe K; Lemeur R Tree Physiol; 2007 Jan; 27(1):43-52. PubMed ID: 17169905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]