These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 12667879)
1. Legume genomes: more than peas in a pod. Young ND; Mudge J; Ellis TH Curr Opin Plant Biol; 2003 Apr; 6(2):199-204. PubMed ID: 12667879 [TBL] [Abstract][Full Text] [Related]
2. Evolution and microsynteny of the apyrase gene family in three legume genomes. Cannon SB; McCombie WR; Sato S; Tabata S; Denny R; Palmer L; Katari M; Young ND; Stacey G Mol Genet Genomics; 2003 Dec; 270(4):347-61. PubMed ID: 14598165 [TBL] [Abstract][Full Text] [Related]
3. The model legume genomes. Cannon SB Methods Mol Biol; 2013; 1069():1-14. PubMed ID: 23996304 [TBL] [Abstract][Full Text] [Related]
4. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Kevei Z; Seres A; Kereszt A; Kaló P; Kiss P; Tóth G; Endre G; Kiss GB Mol Genet Genomics; 2005 Dec; 274(6):644-57. PubMed ID: 16273388 [TBL] [Abstract][Full Text] [Related]
5. Genome-enabled insights into legume biology. Young ND; Bharti AK Annu Rev Plant Biol; 2012; 63():283-305. PubMed ID: 22404476 [TBL] [Abstract][Full Text] [Related]
6. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Cannon SB; Sterck L; Rombauts S; Sato S; Cheung F; Gouzy J; Wang X; Mudge J; Vasdewani J; Schiex T; Spannagl M; Monaghan E; Nicholson C; Humphray SJ; Schoof H; Mayer KF; Rogers J; Quétier F; Oldroyd GE; Debellé F; Cook DR; Retzel EF; Roe BA; Town CD; Tabata S; Van de Peer Y; Young ND Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14959-64. PubMed ID: 17003129 [TBL] [Abstract][Full Text] [Related]
7. Molecular evolution of the HD-ZIP I gene family in legume genomes. Li Z; Jiang H; Zhou L; Deng L; Lin Y; Peng X; Yan H; Cheng B Gene; 2014 Jan; 533(1):218-28. PubMed ID: 24095777 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. Wang Z; Cheng K; Wan L; Yan L; Jiang H; Liu S; Lei Y; Liao B BMC Genomics; 2015 Dec; 16():1053. PubMed ID: 26651343 [TBL] [Abstract][Full Text] [Related]
10. Molecular phylogeny and dynamic evolution of disease resistance genes in the legume family. Zheng F; Wu H; Zhang R; Li S; He W; Wong FL; Li G; Zhao S; Lam HM BMC Genomics; 2016 May; 17():402. PubMed ID: 27229309 [TBL] [Abstract][Full Text] [Related]
11. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. Bertioli DJ; Moretzsohn MC; Madsen LH; Sandal N; Leal-Bertioli SC; Guimarães PM; Hougaard BK; Fredslund J; Schauser L; Nielsen AM; Sato S; Tabata S; Cannon SB; Stougaard J BMC Genomics; 2009 Jan; 10():45. PubMed ID: 19166586 [TBL] [Abstract][Full Text] [Related]
12. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes. Lin Y; Cheng Y; Jin J; Jin X; Jiang H; Yan H; Cheng B PLoS One; 2014; 9(7):e102825. PubMed ID: 25047803 [TBL] [Abstract][Full Text] [Related]
13. Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform. Wang J; Sun P; Li Y; Liu Y; Yu J; Ma X; Sun S; Yang N; Xia R; Lei T; Liu X; Jiao B; Xing Y; Ge W; Wang L; Wang Z; Song X; Yuan M; Guo D; Zhang L; Zhang J; Jin D; Chen W; Pan Y; Liu T; Jin L; Sun J; Yu J; Cheng R; Duan X; Shen S; Qin J; Zhang MC; Paterson AH; Wang X Plant Physiol; 2017 May; 174(1):284-300. PubMed ID: 28325848 [TBL] [Abstract][Full Text] [Related]
14. Genome studies and molecular genetics. Part 1: Model legumes. Exploring the structure, function and evolution of legume genomes. Young ND; Shoemaker RC Curr Opin Plant Biol; 2006 Apr; 9(2):95-8. PubMed ID: 16473039 [No Abstract] [Full Text] [Related]
15. Estimating genome conservation between crop and model legume species. Choi HK; Mun JH; Kim DJ; Zhu H; Baek JM; Mudge J; Roe B; Ellis N; Doyle J; Kiss GB; Young ND; Cook DR Proc Natl Acad Sci U S A; 2004 Oct; 101(43):15289-94. PubMed ID: 15489274 [TBL] [Abstract][Full Text] [Related]
16. Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. Pfeil BE; Schlueter JA; Shoemaker RC; Doyle JJ Syst Biol; 2005 Jun; 54(3):441-54. PubMed ID: 16012110 [TBL] [Abstract][Full Text] [Related]
17. Genomic organization and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Alunni B; Kevei Z; Redondo-Nieto M; Kondorosi A; Mergaert P; Kondorosi E Mol Plant Microbe Interact; 2007 Sep; 20(9):1138-48. PubMed ID: 17849716 [TBL] [Abstract][Full Text] [Related]
18. Polyploidy did not predate the evolution of nodulation in all legumes. Cannon SB; Ilut D; Farmer AD; Maki SL; May GD; Singer SR; Doyle JJ PLoS One; 2010 Jul; 5(7):e11630. PubMed ID: 20661290 [TBL] [Abstract][Full Text] [Related]
19. Aeschynomene evenia, a model plant for studying the molecular genetics of the nod-independent rhizobium-legume symbiosis. Arrighi JF; Cartieaux F; Brown SC; Rodier-Goud M; Boursot M; Fardoux J; Patrel D; Gully D; Fabre S; Chaintreuil C; Giraud E Mol Plant Microbe Interact; 2012 Jul; 25(7):851-61. PubMed ID: 22475377 [TBL] [Abstract][Full Text] [Related]
20. Lotus japonicus: legume research in the fast lane. Udvardi MK; Tabata S; Parniske M; Stougaard J Trends Plant Sci; 2005 May; 10(5):222-8. PubMed ID: 15882654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]