These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 12668430)
1. Electrostatic contributions to the stability of a thermophilic cold shock protein. Zhou HX; Dong F Biophys J; 2003 Apr; 84(4):2216-22. PubMed ID: 12668430 [TBL] [Abstract][Full Text] [Related]
2. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein. Mueller U; Perl D; Schmid FX; Heinemann U J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic stabilization of a thermophilic cold shock protein. Perl D; Schmid FX J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561 [TBL] [Abstract][Full Text] [Related]
4. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability. Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562 [TBL] [Abstract][Full Text] [Related]
5. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions. Wunderlich M; Martin A; Schmid FX J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264 [TBL] [Abstract][Full Text] [Related]
6. Impacts of the charged residues mutation S48E/N62H on the thermostability and unfolding behavior of cold shock protein: insights from molecular dynamics simulation with Gō model. Su JG; Han XM; Zhao SX; Hou YX; Li XY; Qi LS; Wang JH J Mol Model; 2016 Apr; 22(4):91. PubMed ID: 27021210 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. Makhatadze GI; Loladze VV; Gribenko AV; Lopez MM J Mol Biol; 2004 Feb; 336(4):929-42. PubMed ID: 15095870 [TBL] [Abstract][Full Text] [Related]
8. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins. Gribenko AV; Makhatadze GI J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709 [TBL] [Abstract][Full Text] [Related]
9. In-vitro selection of highly stabilized protein variants with optimized surface. Martin A; Sieber V; Schmid FX J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091 [TBL] [Abstract][Full Text] [Related]
10. Role of the chain termini for the folding transition state of the cold shock protein. Perl D; Holtermann G; Schmid FX Biochemistry; 2001 Dec; 40(51):15501-11. PubMed ID: 11747425 [TBL] [Abstract][Full Text] [Related]
11. Origins of the high stability of an in vitro-selected cold-shock protein. Martin A; Kather I; Schmid FX J Mol Biol; 2002 May; 318(5):1341-9. PubMed ID: 12083522 [TBL] [Abstract][Full Text] [Related]
12. An electrostatic basis for the stability of thermophilic proteins. Dominy BN; Minoux H; Brooks CL Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599 [TBL] [Abstract][Full Text] [Related]
13. The effects of ionic strength on protein stability: the cold shock protein family. Dominy BN; Perl D; Schmid FX; Brooks CL J Mol Biol; 2002 May; 319(2):541-54. PubMed ID: 12051927 [TBL] [Abstract][Full Text] [Related]
14. Two exposed amino acid residues confer thermostability on a cold shock protein. Perl D; Mueller U; Heinemann U; Schmid FX Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734 [TBL] [Abstract][Full Text] [Related]
15. Role of electrostatic interactions for the stability and folding behavior of cold shock protein. Su JG; Chen WZ; Wang CX Proteins; 2010 Jul; 78(9):2157-69. PubMed ID: 20455270 [TBL] [Abstract][Full Text] [Related]
16. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability. Max KE; Wunderlich M; Roske Y; Schmid FX; Heinemann U J Mol Biol; 2007 Jun; 369(4):1087-97. PubMed ID: 17481655 [TBL] [Abstract][Full Text] [Related]
17. Common mode of DNA binding to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped form of a major cold shock protein from Bacillus caldolyticus. Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U FEBS J; 2007 Mar; 274(5):1265-79. PubMed ID: 17266726 [TBL] [Abstract][Full Text] [Related]
18. pH and Charged Mutations Modulate Cold Shock Protein Folding and Stability: A Constant pH Monte Carlo Study. de Oliveira VM; Caetano DLZ; da Silva FB; Mouro PR; de Oliveira AB; de Carvalho SJ; Leite VBP J Chem Theory Comput; 2020 Jan; 16(1):765-772. PubMed ID: 31756296 [TBL] [Abstract][Full Text] [Related]
19. Single-stranded DNA bound to bacterial cold-shock proteins: preliminary crystallographic and Raman analysis. Bienert R; Zeeb M; Dostál L; Feske A; Magg C; Max K; Welfle H; Balbach J; Heinemann U Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):755-7. PubMed ID: 15039576 [TBL] [Abstract][Full Text] [Related]
20. Specificity of the initial collapse in the folding of the cold shock protein. Magg C; Kubelka J; Holtermann G; Haas E; Schmid FX J Mol Biol; 2006 Jul; 360(5):1067-80. PubMed ID: 16815441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]