These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 12668454)
1. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Amit R; Oppenheim AB; Stavans J Biophys J; 2003 Apr; 84(4):2467-73. PubMed ID: 12668454 [TBL] [Abstract][Full Text] [Related]
2. On the role of H-NS in the organization of bacterial chromatin: from bulk to single molecules and back. Dame RT; Wuite GJ Biophys J; 2003 Dec; 85(6):4146-8. PubMed ID: 14645101 [No Abstract] [Full Text] [Related]
3. Single molecule elasticity measurements: a biophysical approach to bacterial nucleoid organization. Amit R; Oppenheim AB; Stavans J Biophys J; 2004 Aug; 87(2):1392-3. PubMed ID: 15298941 [No Abstract] [Full Text] [Related]
4. Compaction of single DNA molecules induced by binding of integration host factor (IHF). Ali BM; Amit R; Braslavsky I; Oppenheim AB; Gileadi O; Stavans J Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10658-63. PubMed ID: 11535804 [TBL] [Abstract][Full Text] [Related]
5. Specific and non-specific interactions of integration host factor with DNA: thermodynamic evidence for disruption of multiple IHF surface salt-bridges coupled to DNA binding. Holbrook JA; Tsodikov OV; Saecker RM; Record MT J Mol Biol; 2001 Jul; 310(2):379-401. PubMed ID: 11428896 [TBL] [Abstract][Full Text] [Related]
6. Micromechanical analysis of the binding of DNA-bending proteins HMGB1, NHP6A, and HU reveals their ability to form highly stable DNA-protein complexes. Skoko D; Wong B; Johnson RC; Marko JF Biochemistry; 2004 Nov; 43(43):13867-74. PubMed ID: 15504049 [TBL] [Abstract][Full Text] [Related]
7. A systematic in vitro study of nucleoprotein complexes formed by bacterial nucleoid-associated proteins revealing novel types of DNA organization. Maurer S; Fritz J; Muskhelishvili G J Mol Biol; 2009 Apr; 387(5):1261-76. PubMed ID: 19254726 [TBL] [Abstract][Full Text] [Related]
8. The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. Spurio R; Falconi M; Brandi A; Pon CL; Gualerzi CO EMBO J; 1997 Apr; 16(7):1795-805. PubMed ID: 9130723 [TBL] [Abstract][Full Text] [Related]
9. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Dame RT; Noom MC; Wuite GJ Nature; 2006 Nov; 444(7117):387-90. PubMed ID: 17108966 [TBL] [Abstract][Full Text] [Related]
10. Structural distortions induced by integration host factor (IHF) at the H' site of phage lambda probed by (+)-CC-1065, pluramycin, and KMnO4 and by DNA cyclization studies. Sun D; Hurley LH; Harshey RM Biochemistry; 1996 Aug; 35(33):10815-27. PubMed ID: 8718873 [TBL] [Abstract][Full Text] [Related]
11. Environmental control of the in vivo oligomerization of nucleoid protein H-NS. Stella S; Falconi M; Lammi M; Gualerzi CO; Pon CL J Mol Biol; 2006 Jan; 355(2):169-74. PubMed ID: 16303134 [TBL] [Abstract][Full Text] [Related]
12. Modulation of DNA conformations through the formation of alternative high-order HU-DNA complexes. Sagi D; Friedman N; Vorgias C; Oppenheim AB; Stavans J J Mol Biol; 2004 Aug; 341(2):419-28. PubMed ID: 15276833 [TBL] [Abstract][Full Text] [Related]
13. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. Falconi M; Colonna B; Prosseda G; Micheli G; Gualerzi CO EMBO J; 1998 Dec; 17(23):7033-43. PubMed ID: 9843508 [TBL] [Abstract][Full Text] [Related]
14. H-NS forms a superhelical protein scaffold for DNA condensation. Arold ST; Leonard PG; Parkinson GN; Ladbury JE Proc Natl Acad Sci U S A; 2010 Sep; 107(36):15728-32. PubMed ID: 20798056 [TBL] [Abstract][Full Text] [Related]
15. Molecular Basis for Environment Sensing by a Nucleoid-Structuring Bacterial Protein Filament. Zhao X; Remington JM; Schneebeli ST; Arold ST; Li J J Phys Chem Lett; 2021 Aug; 12(32):7878-7884. PubMed ID: 34382809 [TBL] [Abstract][Full Text] [Related]
16. Gene silencing by H-NS from distal DNA site. Shin M; Lagda AC; Lee JW; Bhat A; Rhee JH; Kim JS; Takeyasu K; Choy HE Mol Microbiol; 2012 Nov; 86(3):707-19. PubMed ID: 22924981 [TBL] [Abstract][Full Text] [Related]
17. A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity. Gulvady R; Gao Y; Kenney LJ; Yan J Nucleic Acids Res; 2018 Nov; 46(19):10216-10224. PubMed ID: 30239908 [TBL] [Abstract][Full Text] [Related]
18. DNA bending in the Sin recombination synapse: functional replacement of HU by IHF. Rowland SJ; Boocock MR; Stark WM Mol Microbiol; 2006 Mar; 59(6):1730-43. PubMed ID: 16553879 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA. Rosselli-Murai LK; Sforça ML; Sassonia RC; Azzoni AR; Murai MJ; de Souza AP; Zeri AC Arch Biochem Biophys; 2012 Oct; 526(1):22-8. PubMed ID: 22772065 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of specific and nonspecific binding of architectural proteins in prokaryotic gene regulation. Benevides JM; Danahy J; Kawakami J; Thomas GJ Biochemistry; 2008 Mar; 47(12):3855-62. PubMed ID: 18302340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]