BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 12668482)

  • 1. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.
    Cortassa S; Aon MA; Marbán E; Winslow RL; O'Rourke B
    Biophys J; 2003 Apr; 84(4):2734-55. PubMed ID: 12668482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation study on the constancy of cardiac energy metabolites during workload transition.
    Saito R; Takeuchi A; Himeno Y; Inagaki N; Matsuoka S
    J Physiol; 2016 Dec; 594(23):6929-6945. PubMed ID: 27530892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial calcium and the regulation of metabolism in the heart.
    Williams GS; Boyman L; Lederer WJ
    J Mol Cell Cardiol; 2015 Jan; 78():35-45. PubMed ID: 25450609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A.
    Wei AC; Liu T; Cortassa S; Winslow RL; O'Rourke B
    Biochim Biophys Acta; 2011 Jul; 1813(7):1373-81. PubMed ID: 21362444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte.
    Cortassa S; Aon MA; O'Rourke B; Jacques R; Tseng HJ; Marbán E; Winslow RL
    Biophys J; 2006 Aug; 91(4):1564-89. PubMed ID: 16679365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial calcium signaling and energy metabolism.
    Nguyen MH; Jafri MS
    Ann N Y Acad Sci; 2005 Jun; 1047():127-37. PubMed ID: 16093491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart.
    Liu T; O'Rourke B
    J Bioenerg Biomembr; 2009 Apr; 41(2):127-32. PubMed ID: 19390955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
    Liu T; O'Rourke B
    Circ Res; 2008 Aug; 103(3):279-88. PubMed ID: 18599868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics.
    Nguyen MH; Dudycha SJ; Jafri MS
    Am J Physiol Cell Physiol; 2007 Jun; 292(6):C2004-20. PubMed ID: 17344315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca
    Cecatto C; Amaral AU; da Silva JC; Wajner A; Schimit MOV; da Silva LHR; Wajner SM; Zanatta Â; Castilho RF; Wajner M
    FEBS J; 2018 Apr; 285(8):1437-1455. PubMed ID: 29476646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes.
    Jo H; Noma A; Matsuoka S
    J Mol Cell Cardiol; 2006 Mar; 40(3):394-404. PubMed ID: 16480740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cardiac mitochondrial Na+-Ca2+ exchanger kinetics with a biophysical model of mitochondrial Ca2+ handling suggests a 3:1 stoichiometry.
    Dash RK; Beard DA
    J Physiol; 2008 Jul; 586(13):3267-85. PubMed ID: 18467367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of mitochondrial calcium transport in the control of substrate oxidation.
    Hansford RG; Zorov D
    Mol Cell Biochem; 1998 Jul; 184(1-2):359-69. PubMed ID: 9746330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium.
    Sommakia S; Houlihan PR; Deane SS; Simcox JA; Torres NS; Jeong MY; Winge DR; Villanueva CJ; Chaudhuri D
    J Mol Cell Cardiol; 2017 Dec; 113():22-32. PubMed ID: 28962857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach.
    Wei AC; Aon MA; O'Rourke B; Winslow RL; Cortassa S
    Biophys J; 2011 Jun; 100(12):2894-903. PubMed ID: 21689522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate- and Calcium-Dependent Differential Regulation of Mitochondrial Oxidative Phosphorylation and Energy Production in the Heart and Kidney.
    Zhang X; Tomar N; Kandel SM; Audi SH; Cowley AW; Dash RK
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase.
    Territo PR; Mootha VK; French SA; Balaban RS
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C423-35. PubMed ID: 10666039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic, but not matrix, calcium is essential for adjustment of mitochondrial pyruvate supply.
    Szibor M; Gizatullina Z; Gainutdinov T; Endres T; Debska-Vielhaber G; Kunz M; Karavasili N; Hallmann K; Schreiber F; Bamberger A; Schwarzer M; Doenst T; Heinze HJ; Lessmann V; Vielhaber S; Kunz WS; Gellerich FN
    J Biol Chem; 2020 Apr; 295(14):4383-4397. PubMed ID: 32094224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
    Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J
    Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.